Hanover Center Traffic Study Hanover, Massachusetts

Development and Evaluation of Alternative Safety Improvements

Prepared For:
Hanover Board of Public Works
40 Fond Street
Hanover, MA 02339

Prepared by:
Fay, Spofford \& Thorndike, Inc.
Engineers Planners Scientists 20 Park Plaza, Suite 920

Boston, MA
(617)426-8666

Hanover Center Traffic Study Hanover, Massachusetts

Development and Evaluation of Alternative Safety Improvements

Prepared For:
Hanover Board of Public Works
40 Pond Street
Hanover, MA 02339

Prepared by:
Fay, Spofford \& Thorndike, Inc.
Engineers 'Planners 'Scientists
20 Park Plaza, Suite 920
Boston, MA
(617)426-8666

May 1, 1998

Contents

Page
EXECUTIVE SUMMARY 1
Project Summary 1
Existing and Projected Traffic Conditions 6
I. INTRODUCTION 8
II. EXISTING TRAFFIC CONDITIONS 10
Data Collection 10
Existing Traffic Control Devices 15
Existing Traffic Operations 17
III. DEVELOPMENT OF HANOVER CENTER CIRCULATION ALTERNATIVES 21
Alternatives Considered 21
IV. EVALUATION OF ALTERNATIVES 36
Overall Safety Evaluation 36
Signal Warrant Analysis 38
Signal Aesthetics 39
Projected Costs 39
.V. FINDINGS AND CONCLUSIONS 41
TECHNICAL APPENDIX
Raw Manual Turning Movement Count Data
Automatic Traffic Recorder (ATR) Count Data
Existing (1997) PM and Saturday Peak Hour Level of Service
Future (2007) PM Peak Hour Level of Service Analysis and Queuing By AlternativeCollision Diagrams 1993, 1994, 1995, and mid-1996 through mid-1997
Traffic Signal Warrants
Miscellaneous Roadway Volume, Speed, and Vehicle Composition Displays
Meeting Minutes 11/12/97, 1/21/98, and 4/1/98

Tables

Page
E-1 Traffic Operations Comparison of 1997 and Year 2007 Base Case (Alternative 0) To Alternatives 1-4 7
1 Level of Service Criteria Unsignalized Intersections 18
2 Level of Service Criteria Signalized Intersections 19
3 Existing PM and Saturday Peak Hour Traffic Operations 20
4 Projected Construction/Engineering Costs By Alternative 40
Figures
E-1 Existing Traffic Issues 2
E-2 Preferred Circulation Alternative 5
1 Regional Project Vicinity 9
2 October 1997 Average Weekday Traffic Volumes 12
3 October 1997 Weekday PM Peak Hour Volumes and Levels of Service 13
4 October 1997 Saturday Peak Hour Volumes and Levels of Service 14
5 Alternative 0 - Base Condition 22
6 Alternative 1 -Realignments 23
7 Alternative 2 - Consolidate Greenspaces 24
8 Alternative 3 - Silver Street Diversion 25
9 Alternative 4 - One Way Pattern 26
Alternative 0 - Base Condition Projected 2007 PM Peak Hour Volumes andLevels of Service27
11
Alternative 1 - Realignments Projected 2007 PM Peak Hour Volumes andLevels of Service28
12
Alternative 2 - Consolidate Greenspaces Projected 2007 PM Peak HourVolumes and Levels of Service29
13 Alternative3 - Silver Street Diversion Projected 2007 PM Peak Hour
Volumes and Levels of Service 30
14
Alternative 4 - One Way Pattern Projected 2007 PM Peak Hour Volumes andLevels of Service31
15 Summary Traffic Circulation Alternatives Evaluation Form 37

Executive Summary

Project Summary

In November, 1997, the Hanover Board of Public Works retained Fay, Spofford \& Thorndike, Inc. (FST) to develop and evaluate potential traffic safety and operational improvements at the convergence of Hanover Street (State Route 139), Main Street, Silver Street, and Center Street in Hanover Center, Massachusetts. The emphasis of this study is clearly on safety.

Concurrently, the Massachusetts Highway Department (MHD) is upgrading Hanover Street through the project study area by constructing pavement, drainage, and sidewalk improvements. MHD is not proposing pavement widening as part of the Hanover Street upgrade project. As part of this project, a flashing beacon at the intersection of Hanover and Grove Streets is to be replaced with a new flashing beacon.

This study considers the impacts that Hanover Center alternatives will have on these MHD improvements, which are to be completed later this year.

During the four year period between January 1993 and December 1996, Hanover Center streets experienced a total of 34 reported accidents, 7 of which involved personal injuries. Motorists who travel through Hanover Center are very familiar with the difficulty and frustration of negotiating left turns from either Main, Silver, or Center Streets onto Hanover Street -particularly during the afternoon peak hours. Pedestrians and bicyclists are also faced with difficulties in crossing Hanover Center streets during the busiest traffic hours.

Figure E-1 illustrates existing study area roadways and study area traffic and safety issues.

Fay, Spofford \& Thorndike, Inc. Engineers \oplus Planners \oplus Scientists

Existing Traffic Issues Hanover Town Center Traffic Study
Hanover, Massachusetts

Hanover Center is an historic district that represents the institutional heart of the Town of Hanover. South of Hanover Street, the study setting includes the Hanover Town Hall and the police department (soon to be relocated), the Hanover public library, the Town fire station, and a Veteran's Memorial. These institutional and cultural resources are located opposite the historic First Congregational Church and parsonage and civil war monument to the north of Hanover Street. Also north of Hanover Street and west of Center Street, town land has been used for many years as a ' T '-ball baseball field. Historic Hanover Cemetery is located adjacent to Main Street behind the First Congregational Church. Two schools are located in the study area, one on Hanover Street east of the study area and the other on Silver Street northeast of the study area.

Within the context of such a setting, the pros and cons of traffic circulation changes must be carefully evaluated from a wide array of perspectives. This traffic study builds upon previous studies of the area by considering circulation impacts on all roadway users including motorists, pedestrians, and bicyclists, as well as the impacts on aesthetics, open space, and emergency vehicles.

To help build consensus for potential improvements, this study included three public meetings. Public meetings were held on November 17, 1997, January 21, 1998, and April 1, 1998.

At the public meeting held on November 17, 1997, results of traffic counts conducted in the vicinity of Hanover Center during late October were presented along with accident history information and observations of Hanover Center during peak hours and issues. Public input was obtained to assist in defining alternatives to be considered during the study.

Following receipt of public comments at the November $17^{\text {th }}$ meeting, written correspondence subsequent to the meeting, and a subsequent discussion with the Hanover Board of Public Works, a total of four build alternatives were developed for comparison to the Base Condition alternative (i.e., Hanover Center as it exists today). Among the Hanover Center alternatives considered were realigning Main, Center, and Silver Streets, closure of the segment of Main Street behind the First Congregational Church, and various circulation pattern changes.

Projections were made of year 2007 weekday PM peak hour traffic volumes and operations with each circulation alternative.

Results of analysis of the four alternatives were presented at a second public meeting held on January 21, 1998.

At that meeting, alternatives under consideration were evaluated for a wide array of issues including:

- Traffic operations
- Emergency vehicle access
- Traffic, pedestrian, and bicycle safety
- Visual impact on existing historical land uses
- Impact on the existing ballfield
- Impact on total available green space
- Impacts on existing trees
- Consistency with future Town plans and MHD Route 139 improvements

During the January 21 meeting, evaluation forms with each of the above criteria were distributed so those in attendance could express their opinions about each of the alternatives. An analysis of the informal request for public input from the meeting indicated that most attendees did not view Alternatives 3, or 4 favorably. According to information received by FST, attendees generally liked the idea of closing Main Street behind the Church and realigning Silver Street; evaluation forms were generally split between Alternatives 1 and 2.

After reviewing the pros and cons of various alternatives, FST concluded that Alternative 2 concept; or some variation thereof, would be the most effective alternative for Hanover Center from traffic safety and operational standpoints. At a Board of Public Works meeting on February 18, 1998, the Board agreed with FST that the Alternative 2 concept was the best of the alternatives under consideration. However, some refinements were suggested to be included in the Preferred Alternative - i.e., a buffer zone between the realigned Main Street corridor, and retention of vehicle access to the rear of the church and Hanover Cemetery.

Implementation of Preferred Alternative minimizes the paved area in Hanover Town Center. Five unsignalized intersections (three of which are congested during the PM and Saturday peak hours) would be replaced with two intersections, one of which would be signalized. The spacing of the intersection of Relocated Silver Street at Hanover Street would be far enough away from that of the Relocated Main Street/Center Streets intersection, that it could be signalized in the future. Safety is expected to be improved through the reduction of conflict points and the ability of Main Street and Center Street traffic to enter Route 139 while traffic on Route 139 is stopped. Channelization of traffic streams and the creation of additional gaps in Route 139 traffic is expected to produce safety benefits as well.

Illustrated on Figure E-2, the Preferred Alternative has the following features:

- Main Street and Center Street would be realigned to form a four-way signalized intersection at Route 139. The traffic signal would be of an ornamental variety consistent with the Town Center's historic character.

Figure E-2

- Silver Street would be realigned and extended to form a ' T ' intersection with Route 139.
- Large segments of Main Street and Center Street would be removed and replaced with a large consolidated green space that could become the site of a relocated ballfield or whatever greenspace use is chosen by the Town for implementation.
- Landscaped buffer would be developed on the west side of the relocated Main Street. Access to the Hanover Cemetery and the rear entrance to the First Congregational Church would be retained, as recommended by the Board of Public Works. Off-street parking would be possible behind the Church to serve both the Church and the relocated ballfield, Special pervious pavement might be considered.
- Route 139 would be restriped to provide a left turn lane in each direction on its approaches to the re-aligned Center Street and Main Street intersection and a left turn lane in the eastbound direction on its approach to Silver Street. A flush or raised channelization island would be added to the westbound approach of Route 139 to Silver Street.

The third public meeting on April 1, 1998 was held to discuss the Preferred Alternative. Those in attendance were generally inclined to favor primarily Alternative 0 (Base Condition), although some limited interest was indicated for testing closure of Main Street behind the First Congregational church (similar to Alternative 1). Some of the attendees called for simply adding police control during peak hours. Others called for expanding the study's scope along the Route 139 corridor to Spring and Grove Streets on Route 139. Some thought was that by controlling these two intersections with traffic signals, the Town Center would operate better.

Concerns expressed with the Preferred Alternative included:

- Representatives of the Brigg's family indicated it would adversely affect their residence, including bringing traffic closer to the residence, scaring their horses, creating increased noise impacts and causing flooding on their property.
- It would cause the elimination of 3-4 mature trees.
- It would cause flooding in a resident's yard on Main Street.
- The signal would cause more safety problems than it would solve (i.e., residents did not view the Town Center as having a particularly high accident rate; and believe that a signal would make things worse).

Within the context of the April 1 meeting, FST would like to offer the following comments:

1) None of the alternatives should be implemented without the general support of Hanover residents.
2) Alternative 0 with some minor modifications, appears to be the Preferred Alternative of the Hanover residents in attendance at the April 1, 1998 meeting. Given this situation, implementable modifications might include improving lighting along Main and Center Streets, possible pavement and drainage upgrades of Center Street between Main and Hanover Streets without widening. The Town should consider requesting MHD on its current project to install additional caution signs on both approaches of Route 139 to the Town Center (e.g., 'SLOW' 'TRAFFIC ENTERING').
3) Due to the geometrics of the intersections in Hanover Center, and the absence of a safe area where police can control on-coming traffic entering Hanover Center, regular peak period police control does not appear to a viable option.
4) We concur with the Board of Public Works Chairman that the segment of Main Street behind the Church should not be closed in an operational test due to safety concerns. Geometric improvements, similar to those proposed with Alternative 1, coupled with sight line improvements at the Hanover Street/Center Street (north) intersection would be needed to conduct a representative test of the modified traffic pattern with Main Street closed behind the Church.

Existing and Projected Traffic Operations

Table E-1 compares overall levels of service between 1997 existing conditions, projected future year 2007 Base Case conditions, and projected future conditions with Hanover Center traffic circulation alternatives, including the Preferred Alternative, Alternative 2.

Table E-1Hanover Center, MassachusettsTraffic OperationsComparison of 1997 and Year 2007 Base Case (Alternative 0) ToAlternatives 1-4						
	1997	$\begin{gathered} \text { 2007 } \\ \text { Auture } \\ \text { Fuse Case } \end{gathered}$				$\begin{gathered} 2007 \\ \text { Ane. Way } \\ \text { One Way } \\ \text { Pattern } \end{gathered}$
Intersection Location	PMPeak Hour Los	PMPreak $\substack{\text { Hour } \\ \text { LOS }}$	PMIPeak Hour LOS	PMPeak Hour LOS	PMPeak Hour LOS	PMPeak Hour LOS
Route 139@ Main Street	F	F	N/A	N/A	A	B
Main Street @ Silver Street	F	F	N/A	N/A	B	A
Route $139 @$ (North)	F	F	N/A	N/A	B	B
$\begin{array}{l}\text { Route } 139 @ \text { Center Street } \\ \text { (South) }\end{array}$	A	A	A (F)	N/A	F	A
Main Street@Center	A	A	N/A	N/A	A	B
$\begin{array}{\|l} \text { Route 139@ Relocated } \\ \text { Main Street } \end{array}$	N/A	N/A	$\mathrm{F}(\mathrm{B})^{2}$	N/A	N/A	N/A
Route 139@ Relocated Silver Street	N/A	N/A	$\mathrm{C} / \mathrm{F}^{3}$	C	N/A	N/A
Route 139 @ Relocated Main Street and Center Street Intersection	N/A	N/A	N/A	C	N/A	N/A

1 Overall LOS - Level of Service from A-F.
LOS 'A' represents less than 5 seconds of delay for all vehicles entering the intersection during the peak 15 minute period. LOS ' F ' represents greater than 45 seconds of delay at an unsignalized intersection or greater than 60 seconds of delay at a traffic signal location. An overall LOS ' F ' means one or more traffic movements are experiencing excessive delays, not necessarily an intersection 'failure'. An intersection 'failure' occurs when an intersection becomes blocked and is unable to process traffic demands.
$2 \mathrm{X}(\mathrm{X})$ - LOS without a traffic signal (LOS with a traffic signal)
3 Expected to be LOS ' F ' due to average backups if a signal is installed at Center Street (north) intersection at Route 139.

N/A Not Applicable
Shaded area represents Preferred Alternative.

At Hanover Center, projected year 2007 PM peak hour traffic volumes in the area are expected to be approximately 10% higher than existing traffic volumes. Because the PM peak hour represents normal 'worst case' traffic operations, future traffic operations were all compared assuming Year 2007 PM peak hour traffic conditions. All alternatives are being compared under similar conditions.

From Table E-1, only Alternatives 4 and 2 provide acceptable overall levels of service. However, public review indicated a concern that Alternative 4 would, overall, be less safe than Alternative 2. Additionally, the diversion of substantial traffic on Route 139, the retention of 5 intersections, and the increase in traffic on Main Street behind the Church were viewed as substantial drawbacks with Alternative 4 . Consequently, Alternative 2 was viewed as most favorable, overall.

I. Introduction

Fay, Spofford \& Thorndike, Inc. (FST) was retained by the Hanover Board of Public Works to conduct a traffic safety and operational study of Hanover Center. The community of Hanover has an estimated 1998 population of approximately 13,400 residents. The Hanover Center study area includes:

- Hanover Street (State Route 139) west of Center Street to approximately 150 feet east of Main Street. Hanover Street is functionally classified as a rural arterial;
- Main Street west of Center Street to its easterly terminus at Hanover Street. Main Street is functionally classified as a collector street.
- Center Street between its northerly terminus at Main Street and approximately 150 feet south of Hanover Street. Center Street is also classified as a collector street.
- Silver Street approximately 150 feet north of Main Street to Main Street. Silver Street is also functionally classified as a collector street.

The above streets intersect one another to form Hanover Center. Figure 1 shows the regional project vicinity.

Base Mapping Source: Town of Hanover Zoning Map
Scale $1^{1 "}=$ Approximately 1,000 feet

Regional Project Vicinity Hanover Town Center Traffic Study Hanover, Massachusetts

II. Existing Traffic Conditions

Data Collection

This section of the report describes the traffic data collection effort undertaken and observations made during the last two weeks of October 1997.

Four types of data were collected -- historical traffic count data, automatic traffic recorder counts, manual turning movement/vehicle classification counts, and historical accident information.

Historical Traffic Count Data

The closest Massachusetts Highway Department continuous count station in the study area (Station 29) is located on Route 139 in the Town of Hanover, just west of Route 53. On the basis of the historical count data, traffic counts on Route 3 during the month of October are typically representative of average annual traffic conditions.

Vanasse Hangen Brustlin, Inc. conducted a previous study of Hanover Center during the mid-1980's. Counts for that study were performed on December 15-16, 1986. Historical counts were therefore available to compare trends in traffic volumes between 1986-1997.

Automatic Traffic Recorder Count

Pneumatic tube automatic traffic recorder (ATR) counts were conducted over a continuous 24 -hour period to analyze hour-byhour traffic variations on access routes to and from Hanover Center. ATR counts were performed at the following six locations during the third week of October, 1997:

- Hanover Street (Route 139) east of Main Street -- speed, volume, and vehicle classification (full weekday plus a Saturday);
- Main Street west of Center Street;
- Main Street east of Center Street;
- Center Street south of Main Street; and
- Center Street south of Hanover Street; and
- Silver Street east of Main Street.

The ATR counters were set to obtain three types of information:

- Hourly directional volume count data;
- Hourly vehicle travel speed data
- Hourly 'gap' data, which establishes the duration and amount of gaps measured in seconds between vehicles in the Hanover Street traffic stream. This data is used to evaluate the ease of future turning movements into and out of Hanover Street.

Figure 2 shows existing 24-hour average weekday traffic volumes on roadways in the study area. Refer to the technical appendix for detailed summaries of the ATR data. Hanover Street was the highest volume facility with more than 15,300 vehicles per day in both directions. Both Main Street and Silver Street carry approximately 5,700 vehicles per day in and out of the study area, while Center Street carries nearly 4,500 vehicles per day in and out of the study area.

Manual Turning Movement Counts

Weekday manual vehicle classification/turning movement counts and queue observations were conducted at the following locations during 7-9 AM and 4-6 PM peak periods on Thursday October 25, 1997 and Saturday October 27, 1997 at the intersections of:

- Center Street and Main Street (3-way unsignalized)
- Main Street and Silver Street (3-way unsignalized)
- Center Street and Hanover Street (two separate 3-way unsignalized intersections); and
- Main Street at Hanover Street (3-way unsignalized).

These time periods were selected as being representative of time periods when street traffic conditions related to Hanover Center are busiest. During the count period, a small amount of pedestrian and bicycle activity was observed in the study area.

To ensure that the manual counts were performed during the busiest periods, manual counts were performed subsequent to the ATR counts during the two highest two-hour AM and PM peak period intervals between 7 AM and 6 PM on a weekday or Saturday. The intent was to evaluate the two worst peak hour conditions during a typical weekday or Saturday. Concurrent with the 'worst case' manual count program during the PM peak hours, FST videotaped peak period traffic conditions from different vantage points to evaluate the movements of vehicles through Hanover Center.

Concurrent with the manual count program, videotape recordings were made of peak hour traffic conditions. These observations found that delays during the PM peak period were excessive at the intersection of Main and Silver Streets, Center Street (southbound) and Hanover Street, and Main and Hanover Streets. Figures 3 and 4 illustrate the results of the weekday PM peak hour and Saturday peak hour count program. Refer to the technical appendix for detailed summaries of the manual turning movement count data collected in the study area.

Schematic Illustration

Fay, Spofford \& Thorndike, Inc.
Engineers \bullet Planners Scientists

October 1997 Weekday PM Peak Hour Volumes
And Overall Levels of Service
Hanover Town Center Traffic Study
Hanover, MA

Figure 3

Figure 4

Historical Accident Data

Historical accident data was requested from the MassHighway Department Bureau of Transportation Planning and Development for the entire community of Hanover, MA. Data was available for the three-year period from 1993-1995. Similarly, the Hanover Police Department provided data on accidents during the twelve-month period between mid-1996 and mid-1997. Accident data at Hanover Center during these four years are summarized on collision diagrams contained in the Technical Appendix to this report.

From the accident data, a total of 34 accidents were reported during the four-year period. Of these, 67% (5.5 accidents per year) were angle accidents and 7 (21\%) involved personal injuries.

From the Institute of Transportation Engineer's Traffic Engineering Handbook (4th Edition, 1992), Figure 4-5, Critical Accident Rates (CAR) are established for various types of roadway facilities. If viewed as a system, the five intersections, which comprise Hanover Center, have an entering Annual Average Daily Traffic (AADT) volume sum of approximately 20,750 vehicles per day. With such an AADT, an average CAR of 1.7-2.2 accidents per million entering vehicles would be expected for minor arterials and collectors with scattered development. In the case of Hanover Center, the CAR between 1993-1997 is estimated at 4.35 accidents per million entering vehicles, or about twice as high as would be expected for facilities carrying similar volumes.

Furthermore, The proportion of angle accidents exceeds the signal warrant threshold of 5 or more accidents per year susceptible to correction through signalization. Angle accidents are the type of accidents most susceptible to correction through signalization.

To give some context to future traffic and safety projections in the area, a comparison of the 1997 data with volume and accident data collected 10 years ago indicates that the safety and volume trends are reasonably similar. The ratio of angle and injury accidents to total accidents and the annual total number of accidents has held fairly steady since the mid-1980's.

Existing Traffic Control Devices

Information on existing traffic control devices in the vicinity of Hanover Center development was obtained through available plans and observations.

Hanover Street (State Route 139)

Hanover Street is a heavily traveled two-way rural arterial street with one lane in each direction and no on-street parking. It is the primary east-west roadway in the Town of Hanover. It has shoulders, which vary in width from 4 to 8 feet. The posted speed limit on Hanover Street is 40 miles per hour. The automatic traffic recorder count taken on November 18-19, 1997 indicated that the 50th percentile travel speed on Hanover Street in front of the site is 36 miles per hour. The 85 th percentile speed (i.e., the speed at which 85 percent of the traffic on is traveling at or below) is 42 miles per hour.

Hanover Street's pavement varies in width from 32 feet east of Main Street to 40 feet west of Main Street within a right-of-way layout that also varies in width, but is typically 64-66 feet wide through the study area. Its pavement, in good to fair condition, is being improved by the MHD during1998.

Bituminous concrete sidewalks are provided on both sides of Hanover Street east of Main Street, but only on the south side between Hanover Town Hall and Main Street. These are soon to be replaced with brick sidewaiks by the MHD. Sidewalks are not provided in the vicinity of Center Street.

Approximately 96.2\% of the vehicles on Hanover Street are automobiles or 2 axle trucks, while approximately 3.4% are heavy trucks and 0.4% are buses. Observations indicate most of the buses are school buses.

Main Street

Main Street, functionally classified as a collector, is generally a north-south two-lane street with one lane in each direction. An access route between Mann's Corner and Hanover Center, Main Street's pavement varies in width from 27' - 38^{\prime} in the study area.

Main Street has a variable width layout, typically 48^{\prime} wide. West of Center Street, Main Street's paved width is typically 27° wide with 1.5^{\prime} offsets to the curb. Between Center and Silver Street its pavement is typically 30^{\prime} wide with 3^{\prime} offsets to the curb. Though Main Street has the right-of-way through its intersections with Center and Silver Streets, it is controlled by a stop sign and divided by a channelization island at its intersection with Hanover Street.

Except for a small segment, which is the continuation of a sidewalk on the east side of Silver Street to Hanover Street, Main Street has no sidewalks through the study area. Its pavement is generally good west of Center Street, fair between Center and Silver Streets, and good between Silver and Hanover Streets.

Silver Street

Also functionally classified as a collector street, Silver Street, like Main Street is a two-way street with one lane in each direction. Silver Street serves as a shortcut route between Route 53 and Hanover Street. Its pavement varies from $25^{\prime}-30^{\prime}$ in width through the study area within a typical 42 ' wide layout. At its intersection with Main Street, Silver Street is controlled by a stop sign and divided by a channelization island.

Silver Street has a sidewalk on its east side to its intersection with Main Street continuing to the Main Street intersection with Hanover Street. Its pavement surface is very good to excellent.

Center Street

Also functionally classified as a collector street, Center Street, like Main and Silver Streets, is a two-way street with one lane in each direction. Center Street is generally a north-south route providing access between Grove and Hanover Streets. In the study area, Center Street's pavement varies from $24^{\prime}-25^{\prime}$ in width within a typical $40^{\prime}-46^{\prime}$ wide layout. At its north and south offset intersections with Hanover Street, Center Street is controlled by stop signs.

Center Street has no sidewalks, but has a gravel parking surface on its west side adjacent to the ' T '-ball baseball field north of Hanover Street. Center Street provides direct access to the Hanover Fire Station. The pavement surface of Center Street is in poor condition between Main and Hanover Streets. The pavement of Center Street south of Hanover Street is in good condition.

Existing Traffic Operations

Peak hour volumes represent the highest four consecutive $15-$ minute periods recorded during the peak period counts. Traffic analyses were carried out for the weekday PM and Saturday peak hours illustrated previously on Figures 3 and 4.

Level of Service

Level of Service (LOS) is a commonly accepted measure of effectiveness of peak hour traffic operating conditions. LOS accounts for such factors as automobile and truck volumes, roadway capacity, speeds, grades, traffic control devices, the progression of vehicular traffic flow along an arterial roadway, roadway types, roadway widths and geometric layouts, as well as anticipated delays. Levels of service range from A, which is the optimal condition, to F , which indicates demands beyond capacity or excessive delay conditions. Levels of service A through D are generally considered desirable for the peak traffic hours. LOS E and LOS F roadway or intersection operations are typically
regarded as 'undesirable' peak hour levels of service. Thus, LOS D has become a nationally accepted threshold between desirable and undesirable peak hour traffic operations.

Level of Service Criteria - Unsignalized Intersections

Traffic operations at unsignalized intersections are given LOS rankings based on conflicting traffic flows and anticipated delays related to those conflicting traffic flows. These conflicting flows are the vehicular turning movements at an intersection, which potentially must yield the right-of-way to other traffic movements at an intersection. Examples of these conflicting movements would be left turns from a major street to a minor side street (across the opposing flow of traffic), or left and right turns from a minor street or side street to the major street.

LOS ranking at an unsignalized intersection is determined by calculating the average total delay in seconds per vehicle. Total delay is the total elapsed time from when a vehicle stops at the end of a queue until the vehicle departs from the stop line and enters the traffic stream. This includes the time required for the vehicle to travel from the last-in-queue position to the first-in-queue position. The average total delay for any particular minor movement is a function of the traffic demand flow rate and the capacity of the approach.

An average total delay of less than 5 seconds per vehicle is defined as LOS A. A total delay of 45 seconds per vehicle is assumed as the break point between LOS E and F. Table 1 summarizes the relationship between LOS and average total delay at unsignalized intersections

Level Of Service Criteria Unsignalized Intersections*	
Level Of Service	Average Total Delay (seconds/vehicle)
A	≤ 5
B	>5 and ≤ 10
C	>10 and ≤ 20
D	>20 and ≤ 30
E	>30 and ≤ 45
F	>45
$*$	Source:
Report \#ighway Capacity Manual, Special	
(1994 Edition)	

Level of Service Criteria - Signalized Intersections

Though not applicable to existing conditions in the Hanover Town Center, LOS for signalized intersections, is also defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. Specifically, LOS criteria are stated in terms of the average stopped delay per vehicle for a 15 -minute analysis period. Table 2 summarizes the relationship between LOS and average stopped delay at signalized intersections.

Note that the criteria for LOS F at signalized intersections involves average vehicle delay of 60 or more seconds, as opposed to unsignalized intersections where the LOS F involves 45 or more seconds of average vehicle delay.

Existing traffic operations were calculated for the unsignalized intersections where traffic counts were performed and are presented on Table 3.

From Table 3, the intersections of Main Street at Hanover Street, Main Street at Silver Street, and Center Street at Hanover Street are experiencing operational problems during the 1997 PM and Saturday peak hours. Field observations confirmed these operational problems.

On the basis of the operational calculations, it was found that two of the five unsignalized intersections operate overall at LOS F during the PM and Saturday peak hours. The intersection of Silver Street at Main Street in isolation would be operating overall at a LOS C. However, due to traffic backups from the nearby intersection of Main and Hanover Streets, the intersection operates at LOS F for left turns out during the PM peak hour.

Table 2 Level Of Service Criteria Signalized Intersections*	
Level Of Service	Average Total Delay (seconds/vehicle)
A	≤ 5.0
B	>5 and ≤ 15
C	>15 and ≤ 25
D	>25 and ≤ 40
E	>40 and ≤ 60
F	>60.0
Source: Highway Capacity Manual, Special Report \#209 (1994 Edition)	

Table 3
Hanover Center, Massachusetts Existing PM and Saturday Peak Hour Traffic Operations
$\left.\begin{array}{||l||c||c||}\hline \hline & \text { 1997 } & \text { 1997 } \\ \hline \begin{array}{l|c||}\text { Intersection } \\ \text { Location }\end{array} & \begin{array}{c}\text { PMPeak Hour } \\ \text { LOS }\end{array} & \text { Saturday Peak Hour } \\ \text { LOS }\end{array}\right]$

1 Overall LOS - Level of Service from A-F.
LOS 'A' represents less than 5 seconds of delay for all vehicles entering the intersection during the peak 15 minute period. LOS ' F ' represents greater than 45 seconds of delay at an unsignalized intersection.

III. Development of Hanover Center Circulation Alternatives

Alternatives Considered

At issue is the potential need for improvements at Hanover Center compared to the Base Case -- the 'Do-Nothing' alternative. For analysis purposes, the Base Case alternative is being referred to as Alternative 0 and is illustrated on Figure 5.

A total of four build alternatives were developed for comparison against Alternative 0. Illustrated on Figures 6-9, they are:

- Alternative 1 - Realignments
- Alternative 2 - Consolidate Greenspaces
- Alternative 3 - Silver Street Diversion
- Alternative 4 - One-way Pattern

Further on, each of the above alternatives is described in detail.

Conversations with the Town of Hanover planning department indicate that a small amount of growth is expected in 'background' traffic in the area over the next several years. Locally, an additional single family residential development (65 more units) is programmed which may directly affect traffic in Hanover Center. To account for this development and modest regional growth in background traffic, the analysis contained in this report assumes that background traffic will grow slowly at approximately 1% per year between 1997 and 2007, a total of 10.5% traffic growth over the next ten years.

Because the PM and Saturday peak hour volumes are relatively similar, but the PM peak hour has slightly higher traffic volumes, future analysis comparisons focus on Projected year 2007 PM peak hour traffic volumes. Projected year 2007 PM peak hour traffic volumes and levels of service for Alternatives $0-4$ are presented on Figures 10-14.

Figure 7

Figure 8
-

Schematic Illustration

Fay, Spofford \& Thorndike, Inc. Engineers Planners Scientists

2007 Weekday PM Peak Hour Volumes Alternative 0 - Base Condition

Hanover Town Center Traffic Study Hanover, MA

Schematic Illustration

Fay, Spofford \& Thorndike, Inc.
Engineers © Planners \bullet Scientists

2007 Weekday PM Peak Hour Volumes Alternative 1-Realignments
 Hanover Town Center Traffic Study Hanover, MA

Figure 12

Schematic Illustration

Fay, Spofford \& Thorndike, Inc. Engineers • Planners © Scientists

2007 Weekday PM Peak Hour Volumes Alternative 3 - Silver Street Diversion
 Hanover Town Center Traffic Study Hanover, MA

Figure i3

Figure 14

Alternative 1-Realignments

Alternative 1 was considered as one of two alternatives that did not include signalization. However, a sub-analysis was performed with a traffic signal in place to examine the impacts that a signal would have with Alternative 1.

The initial basis for Alternative 1 was suggested at the first November 17, 1997 meeting, when an attendee noted that simple realigning of Center and Silver Streets and closing Main Street behind the Church was all that was needed to solve existing traffic problems in the area. Alternative 1 contains the following elements:

- Closure of Main Street between Center and Silver Streets and replacement of five unsignalized intersections with three unsignalized intersections. Closure of one of the access roads into Hanover Cemetery is required.
- Realignment of Silver Street to an angle closer to 90° at Hanover Street. The Relocated Silver Street approach to Hanover Street would have a separate left and right turn lane. The radius of curvature to Silver Street would be reduced to that required for fire truck access to slow the speed of turning traffic, thereby improving pedestrian safety.
- Realignment of Center Street from the south to an angle closer to 90° at Hanover Street. The Relocated Center Street approach to Hanover Street would be a single lane wide enough at the intersection to accommodate a waiting left turn vehicle with room to bypass right turning vehicles. A channelization island (flush or raised) would be provided on the Center Street approach to Hanover Street.
- Provision of new channelization islands (flush or raised) on the Route 139 approaches to Relocated Silver Street and Relocated Center Street. These new islands would channel eastbound and westbound Route 139 traffic to the right opposite new exclusive left turn lanes from Route 139 to Relocated Silver Street and Relocated Center Street.
- Provision of a new sidewalk on Silver Street in the abandoned Main Street layout and the east side of Relocated Main Street, which would be in the same right-of-way as the existing Center Street alignment.
- Retention of existing crosswalks on Route 139. A new crosswalk would be provided on Silver Street opposite the proposed new sidewalk behind the Church.
- Closure of the access to Town Hall opposite Center Street.

Alternative 2 - Consolidate Greenspaces

Alternative 2, a signalized variation of Alternative 1, also involves closure of Main Street behind the Church. Essentially, Alternative 2 maximizes the provision of green space in Hanover Center compared to any of the alternatives considered, including Alternative 0. The elements of Alternative 2 include:

- Removal of a ± 540-foot segment of Main Street and a ± 190-foot segment of Center Street and construction of a ± 470-foot segment of Relocated Main Street opposite a realigned Center Street segment. Replacement of five unsignalized intersections with one unsignalized and one signalized intersection. Alternative 2, as illustrated, retains all access roads into Hanover Cemetery.
- Realignment of Silver Street to an angle closer to 90° at Hanover Street. The Relocated Silver Street approach to Hanover Street would have a separate left and right turn lane.
- Provision of a channelization island (flush or raised) on the Relocated Center Street approach to Hanover Street. The Relocated Center Street approach to Hanover Street would be a single lane wide enough at the intersection to accommodate a waiting left turn vehicle with room to bypass right turning motorists, the vast majority of all motorists who approach Center Street from this direction. Access to the nearest parking area on Center Street would be retained, but relocated as far away from the intersection as possible (at least 50 feet).
- Provision of a new channelization island (flush or raised) on the Route 139 approach to Relocated Silver Street. This new island would channel westbound Route 139 traffic to the right opposite new exclusive left turn lanes from Route 139 to Relocated Silver Street and Center Street.
- Provision of new sidewalks on Silver Street in the abandoned Main Street and Center Street layouts (similar to Alternative 1) and on the north side of Route 139.
- Addition of one crosswalk to Route 139 at the proposed signal location. Like Altemative 1, a new crosswalk would be provided on Silver Street opposite the proposed new sidewalk behind the Church. Optionally, the unsignalized crosswalk on Hanover Street at the Church could be eliminated and replaced by a sidewalk on the north side of Hanover Street connecting to the new crosswalk at the traffic signal, thereby keeping the number of crosswalks on Hanover Street to two, as existing. The
intersection of Silver Street and Route 139 could be considered for potential signalization by providing a signal conduit between the new signal at Route 139/Center/Relocated Main Street.
- Disposition of the new consolidated green space is a Town of Hanover issue to be resolved. The existing baseball field could be relocated in the same area (the area created is roughly equivalent to that of the existing ballfield), or some other greenspace use (e.g., a Town Common 'special event' open space) could be considered.
- Closure of the access to Town Hall opposite Center Street.

Alternative 3-Silver Street Diversion

Alternative 3 would not close Main Street behind the Church, but includes a traffic signal at the southbound Center Street intersection with Hanover Street. Alternative 3 changes the directionality of Main Street between Hanover Street and Center Street to one-way westbound. Elements of Alternative 3 include:

- Reconstruction of the Silver Street and Main Street intersection to accommodate the change of Main Street from two-way to one-way westbound between Hanover and Center Streets. A new triangular island would be created to channelize all Silver Street traffic to a right-turn-only and to divide Main Street westbound and Silver Street northbound traffic flow volumes.
- Conversion of Center Street from two-way operation to one-way southbound operation between Main and Hanover Streets. Signalization would be required at the intersection of southbound Center Street with Hanover Street.
- Diversion of Main Street and Silver Street to approach Hanover Street via southbound Center Street. The Center Street approach to Hanover Street would have separate left and right turn lanes.
- Narrowing of the one-way westbound segment of Main Street between Silver and Center Streets by approximately 6 feet. A new channelization island would be constructed at the intersection between Main and Center Streets.
- Provision of new channelization islands (flush or raised) on the Route 139 approaches to Relocated Silver Street and Relocated Center Street. These new islands would channel eastbound and westbound Route 139 traffic to the right opposite new exclusive left turn lanes from Route 139 to Relocated Silver Street and Relocated Center Street.
- Provision of a new sidewalk on the south side of Hanover Street between Town Hall and the Center Street leg south of Hanover Street.
- Closure of the access to Town Hall opposite Center Street.

Alternative 4-One Way Pattern

Like Alternative 3, Alternative 4 would not close Main Street behind the Church, but does not require the installation of a traffic signal. Alternative 4, however, not only involves changing the directionality of Main Street between Hanover Street and Center Street to one-way westbound, but also requires changing Hanover Street to one-way eastbound between Main and Center Streets. Elements of Alternative 4 include:

- Conversion of the two-way segments of Main Street, Center Street, and Hanover Streets to one-way operation, similar to a 'round-about' circulation pattern. New channelization islands would be constructed at the intersections of Main and Hanover Streets, Silver and Main Streets, Main at Center Streets, as well as Hanover at Center Street.
- Crosswalks would be provided at one-way merge and diverge points.
- Narrowing of the one-way segments of Hanover and Main Streets compared to existing conditions to a typical crosssection of 24-28 feet.
- Provision of a new channelization island (flush or raised) and some deflection curvature on the Route 139 eastbound approach to Relocated Center Street. This new island would channel eastbound Route 139 traffic to the right opposite new westbound exclusive left turn lane from Route 139 to Relocated Center Street. The deflection would slow the eastbound Route 139 traffic as it enters the area where the one-way pattern occurs.
- Provision of a new sidewalk behind the Church connecting the area near the Civil War monument to the east side of Center Street near the Church, as well as a new sidewalk on the south side of Hanover Street between Town Hall and the Center Street leg south of Hanover Street.
- Closure of the access to Town Hall opposite Center Street.

IV. Evaluation of Alternatives

Prior to a public meeting held on January 21, 1998, a matrix was developed to compare various features of Alternatives 1-4 versus Alternative 0 , the Base Condition. The matrix, illustrated on Figure 15, addresses such issues as:

- Traffic operations
- Emergency vehicle access
- Traffic, pedestrian, and bicycle safety
- Visual impact on existing historical land uses
- Impact on the existing ballfield
- Impact on total available green space
- Impacts on existing trees
- Consistency with future Town plans and MHD Route 139 improvements

Overall Safety Evaluation

Continuation of Alternative 0 invites a continuation of existing safety deficiencies in Hanover Center. If current trends continue, FST estimates that approximately 90 accidents will occur within the Hanover Center study area over the next 10 years with Alternative 0 . Of these, approximately 20 accidents are likely to involve personal injuries.

With anc unsignalized Alternative 1 , Realignments, only a marginal improvement is expected in safety. A marginal improvement is expected because the existing five unsignalized intersections would be reduced to three unsignalized intersections.

While PM peak hour traffic volumes with Alternative 1 are expected to be processed better than with Alternative 0, an LOS F is still expected at the intersection of Relocated Main Street (within the existing Center Street alignment) at Hanover Street. Sight lines at the Relocated Main Street intersection are impaired somewhat due to the rise in the elevation of the land in front of the Church. While Alternative 1 does not assume a signal at the intersections of Relocated Main Street at Hanover Street, a signal at that location would improve its operations to LOS B. Traffic backups from the traffic signal would impair traffic operations at the Center Street/Hanover Street and Relocated Silver Street/Hanover Street signals.

Note: Alternative 0 is the base against which impacts of Alternatives $1-4$ are compared. Comparisons represent the opinion of the Consultant compared to Alternative 0. FST assumes all faciors are not weighted equally. Selection of a preferred alternative involves assignng weight to each evaluation factor (e.g. some people may consider safety more important than operations; others may consider historical impacts to be more important than traffic operations).

Fay, Spofford \& Thorndike, Inc. Engineers - Planners Sclentists

Summary Traffic Circulation Alternatives Evaluation Form

Safety Evaluation (Cont.)

Abstract

With Alternative 2, the proposed traffic signal at the fourway intersection of Hanover Street at Relocated Main Street/Relocated Center Street is projected to operate at an overall LOS of C during the year 2007 PM peak hour. Traffic backups, or queues, from the traffic signal will not be long enough to adversely affect the operations of the Relocated Silver Street at Hanover Street intersection. Because most of the turning movements from Relocated Silver Street will be right turns, its overall operations will be LOS C, even though left turns out of the intersection will be at LOS F. It is important to understand that left turn volumes (refer back to Figures 10 and 14) from Relocated Silver Street will be reduced by substantially compared to Alternative 0 . Additionally, the signal at the Relocated Main Street/Relocated Center Street intersection will create gaps in traffic flow that will help reduce left turn movement delays out of relocated Silver Street. Overall, the features of Alternative 2 are expected to reduce the predominate angle accidents compared to Alternative 0.

With Alternative 3, Silver Street Diversion, the proposed _traffic signal at the intersection of Center Street at Hanover Street is expected to queue traffic back far enough to block the intersection of Center Street at Hanover Street, but not the intersection of Relocated Silver Street at Hanover Street.

Because Alternative 3 is expected to provide pedestrians to and from the Church with a more convenient crossing point $\mathrm{o}_{2}^{\frac{f}{2}}$ Hanover Street than with Alternative 2, it is anticipated that its overall safety impacts will be comparable to or slightly better than with Alternative 2. Alternative 3 retains five intersections, which is considered to be a safety drawback compared to Alternative 2. The LOS F at the offset Center Street is another potential safety drawback of Alternative 3 .

Alternative 4, Silver Street Diversion, would retain the existing number of intersections in the area. While projected levels of service would be somewhat improved over existing conditions, the public perception of Alternative 4 is that it would degrade safety. While this perception may not match reality, the forced diversion of heavy traffic volumes on Hanover Street to Main Street behind the Church is considered to be a substantial drawback to Alternative 4.

Signal Warrant Analysis

Public input indicates the issue of placing signals in Hanover Center is very controversial. Most residents would like to avoid the addition of a signal due to aesthetic concerns. Furthermore, studies show traffic signals can increase rear-end accidents. This is why it is necessary to consider carefully the need for a traffic signal.

A signal warrant analysis can be used to determine whether a signal can be installed -- meeting signal warrants does not mean that a signal must be installed. At the present time, the signal warrant analysis provided in the Manual on Uniform Traffic Control Devices (MUTCD) and published by the Federal Highway Administration contains a total of 11 signal warrants. The intersections of Hanover Street with Main Street and Center Street meet signal warrants today. The intersection of Hanover Street/Main Street meets Warrants 1, 2, 6, 7, 8, 9, 10 and 11, while both the offset Hanover Street/Center Street intersections meets Warrants 2, 7, 8, 9 and 11.

Traffic signalization is proposed only with Alternatives 2 and 3 and, in both cases, only at one intersection - the one with the most serious operational deficiencies. Because existing measured traffic volumes meet signal warrants, by definition, the intersections proposed for future signalization with Alternatives 2 and 3 would meet signial warrants. With Alternative 2, the intersection of Relocated Main Street and Relocated Center Street at Hanover Street is proposed for signalization. With Alternative 3, the intersection of Center Street (with diverted Main and Silver Street approach volumes) at Hanover Street is proposed for signalization. In both instances, the proposed signalized locations will meet Warrants 1,2 and $6-11$.

It is noted that with Alternative 1, the intersection of Relocated Main Street at Hanover Street would meet Signal Warrants 1,2 and $6-11$, but public input requested examining Alternative 1 without signalization, so analyses were completed with and without signalization.

Signal Aesthetics

Many types of ornamental traffic signal fixtures are available for possible application to Hanover Center. For example, available black curved fixtures with Victorian detail would clearly fit better in the community than standard aluminum pole fixtures. Such specialty fixtures should be considered within an historic district.

Projected Costs

Table 4 was prepared to provide preliminary construction and design costs for further information in the evaluation of the four circulation alternatives at Hanover Center.

These preliminary cost estimates should be considered as an 'opinion of probable cost' for budgeting purposes only. To be conservative, a contingency of 37.5% has been assumed in each construction cost estimate. Costs do not include costs involved with closing the access to Town Hall opposite Center Street north and reconfiguring the parking lot/Town Hall access accordingly.

This action is an option at the Town's discretion, which would improve safety, particularly with Alternatives 1, 3, and 4, but is not as critical with Alternative 2. However, potential closure of the Center Street south access to the Town parking lot has not been assumed with Alternative 2, but is clearly desirable due to queuing on the northbound Center Street approach. It is assumed a suitable substitute access to the parking area can be developed if it becomes necessary to close the Center Street access.

Table 4 Hanover Center, Massachusetts Projected Construction/Engineering Costs By Alternative		
Alternative	Preliminary Construction Cost Estimate	Engineering@ $10-15 \%$ of Construction Cost
Alternative IRealignments Without a traffic signal at Relocated Main Street With a traffic signal at Relocated Main Street	$\begin{aligned} & \$ 270,000 \\ & \$ 350,000 \end{aligned}$	\$27,000-\$40,500 $\$ 35,000-\$ 52,500$
Alternative 2 Consolidated Green Srace With a traffic signal at Relocated Main Street/Center	\$350,000	\$35,000-\$52,500
Alternative 3 Silver Street Diversion With a traffic signal at Center Street North	\$390,000	\$39,000-\$58,500
Alternative 4 One Way Patiom Without traffic signals	\$180,000	\$21,600-\$27,000

V. Findings and Conclusions

FST concludes from the analysis that without signalization, traffic operations and safety characteristics of Alternative 1 will only be marginally better than with Alternative 0 . With Alternative 3, PM peak hour traffic backups, or queues, on Hanover Street will extend into the intersection of Center Street (northbound) at Hanover Street. Alternative 2 traffic operations during the year 2007 are expected to be better than with Alternatives 0 or 3 . While Alternative 4 results in acceptable traffic operations, the required diversion of Hanover Street traffic would put the Church in the middle of an 'roundabout' -- a condition many residents found objectionable. The perception of the public was that the geometrics of the Alternative 4 one-way pattern would create confusion and potentially more safety problems than existing conditions. Alternative 4 is also the most inconsistent with ongoing MHD improvements to Hanover Street.

Attendees at a public meeting on January 21, 1998 indicated support for Alternatives 0,1 and 2. Virtually no support was indicated for Alternatives 3 and 4. At the final public meeting on April 1, 1998, virtually none of the attendees expressed support for Alternative 2 - most tended to support Alternative 0 , though some requested testing closure of Main Street behind the church without any other changes.

FST concluded that from a traffic perspective the most beneficial alternative, overall, would be Alternative 2, or some variation thereof. Implementation of Alternative 2 would minimize the paved area in Hanover Town Center compared to any of the alternatives considered, including Alternative 0 . Five unsignalized intersections (three of which are congested during the PM and Saturday peak hours) would be replaced with two intersections, one of which would be signalized. Safety is expected to be improved through the reduction of conflicting volumes and conflict points and the channelization of traffic streams. Accessibility of Main Street, Silver Street, and Center Street traffic to Route 139 would be improved. Pedestrian crossings of Route 139 would be improved.

However, due to lack of support for such an alternative, the following measures are offered:

Within the context of the April 1 meeting input received, FST would like to offer the following comments:

1) None of the alternatives should be implemented without the general support of Hanover residents.
2) Alternative 0 with some minor modifications, appears to be the Preferred Alternative of the Hanover residents in attendance at the April 1, 1998 meeting. Given this situation, implementable modifications might include
improving lighting along Main and Center Streets, possible pavement and drainage upgrades of Center Street between Main and Hanover Streets without widening. The Town should consider requesting MHD on its current project to install additional caution signs on both approaches of Route 139 to the Town Center (e.g., 'SLOW' 'TRAFFIC ENTERING').
3) Due to the geometrics of the intersections in Hanover Center, and the absence of a safe area where police can control on-coming traffic entering Hanover Center, regular peak period police control does not appear to a viable option.
4) We concur with the Board of Public Works Chairman that the segment of Main Street behind the Church should not be closed in an operational test due to safety concerns. Geometric improvements, similar to those proposed with Alternative 1, coupled with sight line improvements at the Hanover Street/Center Street (north) intersection would be needed to conduct a representative test of the modified traffic pattern with Main Street closed behind the Church.

Location ity/State: :ounter JANUS File:	Route 1 Hanover N4 PHOO200	$\begin{aligned} & 139 \text { East } \\ & r, \mathrm{MA} \\ & 01 \end{aligned}$	of Ma					Accurate 508-664 $860-282$	$\begin{aligned} & \text { Counts } \\ & -2565 \\ & -0223 \end{aligned}$					Site Code : PHOO2001 Start Date: 10/17/97 File I.D. : OO2CLSEB
				Eastbound										Page
$\begin{aligned} & \text { legin } \\ & \text { sime } \end{aligned}$	Bikes	$\begin{array}{r} \text { Cars \& } \\ \text { Tlrs } \\ \hline \end{array}$	2 Axle Long	Buses	$\begin{aligned} & 2 \text { Axle } \\ & 6 \text { Tire } \end{aligned}$	3 Axle Single	$\begin{aligned} & 4 \text { Axle } \\ & \text { Single } \end{aligned}$	<5 Axl Double	5 Axle Double	>6 Axl Double	$<6 \mathrm{Axl}$ Multi	6 Axle Multi	$>6 \mathrm{AxI}$ Multi	Totl
12:00 10/17	0	36	1	0	0	0	0	0	0	0	0	0	0	37
1:00	0	25	3	0	0	0	0	0	0	0	0	0	0	28
12:00	0	7	0	0	0	0	0	0	0	0	0	0	0	7
03:00	0	11	6	0	0	0	0	0	0	0	0	0	0	17
04:00	0	17	6	0	2	0	0	0	1	0	0	0	0	26
[15:00	0	39	23	0	4	2	0	0	0	0	0	0	0	68
16:00	0	104	43	5	7	1	0	2	2	0	0	0	0	164
07:00	5	216	102	4	13	3	0	3	0	2	0	0	0	348
08:00	2	337	82	5	8	3	0	1	2	1	0	1	0	442
19:00	0	300	72	1	16	2	0	3	0	0	0	0	0	394
1. 0:00	0	287	81	6	12	1	0	4	0	0	0	0	0	391
11:00	0	353	91	7	13	2	0	1	1	0	1	0	0	469
[
.2:00 pm	1	353	81	1	9	0	0	2	1	0	0	2	0	450
01:00	3	326	99	5	13	5	0	4	0	0	0	0	1	456
02:00	6	446	115	11	8	5	ב	0	2	2	0	0	0	596
[33:00	2	509	117	1	7	2	0	2	2	0	0	1	0	643
14:00	5	505	142	1	20	1	0	3	1	0	0	0	0	678
05:00	7	630	129	1	13	5	0	1	1	0	0	0	0	787
06:00	4	474	112	0	10	1	0	0	1	0	0	0	0	602
17:00	2	299	65	0	3	1	0	1	0	0	0	0	0	371
1 18:00	0	191	44	0	0	0	1	0	0	0	0	0	0	236
09:00	1	167	30	0	2	0	0	0	2	1	0	0	0	203
120:00	0	129	29	0	1	0	0	0	0	0	0	0	0	159
11:00	0	100	16	1	2	0	0	0	0	0	0	0	0	119
Day Totals	38	5861	1489	49	163	34	2	27	16	6	1	4	1	7691
12:00 10/18	0	94	7	0	3	0	0	1	1	0	0	0	0	106
11:00	0	26	8	0	3	0	0	1	0	0	0	0	0	38
02:00	0	26	2	0	0	0	0	0	0	0	0	0	0	28
03:00	0	14	7	0	0	0	0	0	0	0	0	0	0	21
, 34:00	0	15	4	0	1	0	0	0	0	0	0	0	0	20
1 35:00	0	34	5	0	3	0	0	0	0	0	0	0	0	42
06:00	0	78	18	1	4	0	0	0	1	0	0	0	0	102
177:00	0	213	57	2	11	1	0	3	0	0	0	0	0	287
38:00	2	275	108	2	7	2	1	0	0	3	0	0	0	400
09:00	1	403	126	1	8	4	1	2	0	0	1	0	1	548
10:00	4	506	117	1	9	3	0	3	1	3	0	0	0	647
[11:00	6	470	118	4	12	5	0	3	0	4	1	0	2	625
4														
12:00 pm	3	495	131	1	6	3	1	0	0	0	0	0	0	640
- 01:00	3	512	105	0	7	2	0	3	0	0	0	0	0	632
32:00	2	403	115	0	8	3	0	0	0	0	0	0	0	531
L. $33: 00$	3	516	100	0	13	2	0	1	0	0	0	0	0	635
04:00	4	431	119	0	1.0	0	0	0	0	0	0	0	0	564
- 25:00	4	401	83	1	3	0	0	2	1	0	0	0	0	495
36:00	1	279	58	0	2	0	0	0	0	0	0	0	0	340
-07:00	0	227	52	0	0	0	0	0	1	0	0	0	0	280
08:00	2	187	36	0	1	0	0	0	1	0	0	0	0	227
29:00	0	119	22	0	2	0	0	0	0	0	0	0	0	143
10:00	0	111	22	0	1	0	0	0	0	0	0	0	0	134
11:00	0	104	12	0	0	0	0	0	0	0	0	0	0	116
, Day Totals	35	5939	1432	13	114	25	3	19	6	10	2	*	3	7601
(Totals	73	11800	2921	62	277	59	5	46	22	16	3	4	4	15292
L-percent	. 4%	77.1\%	19.1\%	. 4%	1.8\%	. 3%	. 0%	. 3\%	.18	. 1 \%	. 0%	. 0\%	.0\%	

Location : Route 139 East of Main St

Pity/state: Hanover, MA	508-664-2565
:ounter : N4	$860-282-0223$

JANUS File: PHOO2OO1
Site Code : PH002001
Start Date: 10/17/97
File I.D. : OO2SPEB
Eastbound
Page : 2
50th 85th

$\begin{aligned} & \text { segin } \\ & \text { 'ime } \end{aligned}$	$\begin{aligned} & 1- \\ & 14 \end{aligned}$	$\begin{array}{r} 15- \\ 29 \\ \hline \end{array}$	$\begin{array}{r} 20- \\ 24 \\ \hline \end{array}$	$\begin{array}{r} 25- \\ 29 \\ \hline \end{array}$	$\begin{array}{r} 30- \\ 34 \\ \hline \end{array}$	$\begin{array}{r} 35- \\ 39 \\ \hline \end{array}$	$\begin{array}{r} 40- \\ 44 \\ \hline \end{array}$	$\begin{array}{r} 45- \\ 49 \\ \hline \end{array}$	$\begin{array}{r} 50- \\ 54 \\ \hline \end{array}$	$\begin{array}{r} 55- \\ 59 \\ \hline \end{array}$	$\begin{array}{r} 60- \\ 64 \\ \hline \end{array}$	$\begin{array}{r} 65- \\ 69 \\ \hline \end{array}$	$\begin{aligned} & 70- \\ & 999 \end{aligned}$	Totl	$\begin{aligned} & 50 \mathrm{th} \\ & \text { pet. } \end{aligned}$	$\begin{aligned} & \text { 85th } \\ & \text { PCt. } \end{aligned}$
12:00 10/18	0	0	0	0	13	25	44	21	3	0	0	0	0	106	40	46
1:00	0	0	1	0	8	8	15	5	1	0	0	0	0	38	40	43
12:00	0	0	0	2	1	5	11	7	2	0	0	0	0	28	41	47
1 33:00	0	0	0	0	2	2	6	6	3	1	1	0	0	21.	43	52
04:00	0	0	0	1	2	3	4	6	1	3	0	0	0	20	43	53
715:00	0	0	0	2	1	7	18	9	3	2	0	0	0	42	41	48
36:00	0	0	1	5	6	20	57	7	3	2	0	1	0	102	40	43
07:00	6	7	10	24	65	88	68	18	0	1	0	0	0	287	35	42
08:00	8	19	21	52	105	88	89	14	2	0	0	0	2	400	33	41
19:00	25	36	80	158	166	56	18	2	2	0	1	0	4	548	27	34
10:00	17	38	86	161	228	85	23	3	1	0	0	1	4	647	29	35
11:00	35	55	76	124	195	104	22	2	2	0	2	0	8	625	29	36
F																
12:00 pm	8	6	25	86	278	165	59	5	2	1	2	1	2	640	32	37
01:00	7	7	18	56	237	220	77	4	1	0	3	1	1	632	33	38
02:00	3	1	5	37	160	217	100	6	1	0	0	0	1	531	35	40
[-33:00	1	1	1	15	135	284	164	23	3	2	0	1	5	635	36	42
34:00	0	0	2	14	134	178	204	25	4	1	0	0	2	564	37	42
05:00	0	1	3	1	95	182	182	29	1	1	0	0	0	495	37	42
06:00	0	0	0	3	73	129	113	20	1	1	0	0	0	340	37	42
07:00	0	0	0	1	52	97	112	12	4	0	0	0	2	280	38	42
- 08:00	0	0	1	5	38	90	71	18	2	1	1	0	0	227	37	42
09:00	0	0	0	3	33	45	47	13	1	1	0	0	0	143	37	42
$10: 00$	0	0	0	4	22	33	52	19	4	0	0	0	0	134	40	45
11:00	0	1	0	1	18	31	48	15	2	0	0	0	0	116	40	43
Day Totals	110	172	330	755	2067	2162	1604	289	49	17	10	5	31	7601	35	
Totals	136	210	438	1071	3922	4861	3804	637	89	30	18	8	68	15292		

Speed Sjatistics.

15th Percentile Speed	:	29 MPH
Median Speed (50th percentile):	36 MPH	
Average Speed - All Vehicles	$:$	37 MPH
85th Percentile Speed	$:$	41 MPH
95th Percentile Speed	$:$	45 MPH
10 MPH Pace Speed	$: 30-39 \mathrm{MPH}$	
Number of Vehicles in Pace	$: 8783$	
Percent of Vehicles in Pace :	57.97%	
Number of Vehicles > 30 MPH	$: 12653$	
Percent of Vehicles > $30 \mathrm{MPH}:$	83.51%	

City/State: Hanover, MA
Site Code : PH002001

Begin Time	Bikes	$\begin{aligned} & \operatorname{ars} \& \\ & \text { Tliss } \\ & \hline \end{aligned}$	2 Axle Long	Buses	$\begin{aligned} & 2 \text { Axle } \\ & 6 \text { Tire } \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \text { Axle } \\ & \text { Single } \end{aligned}$	$\begin{aligned} & 4 \text { Axle } \\ & \text { Single } \end{aligned}$	<5 Axl Double	5 Axle Double	$>6 \mathrm{Axl}$ Double	$<6 \mathrm{Axl}$ Multi	6 Axle Multi	$>6 \mathrm{Axl}$ Multi	Totl
12:00 10/17	0	1	6	0	0	0	0	0	0	0	0	0	0	7
01:00	0	3	4	0	0	0	0	0	0	0	0	0	0	7
02:00	0	2	2	0	0	0	0	0	0	0	0	0	0	4
03:00	0	0	4	0	1	0	0	0	0	0	0	0	0	5
04:00	0	5	3	0	0	0	0	1	0	0	0	0	0	9
05:00	1	43	19	0	5	1	0	0	0	0	0	0	0	69
06:00	0	253	79	1	2	0	0	1	0	2	0	0	0	338
107:00	2	414	123	3	20	4	0	5	4	0	0	1	1	577
08:00	4	358	116	8	5	3	0	1	1	2	0	0	0	498
09:00	0	281	97	2	19	2	1	2	3	0	0	0	0	407
10:00	1	307	103	6	16	3	0	0	0	0	0	0	0	436
11:00	4	303	87	6	13	2	0	2	2	1	0	0	0	420
P12:00 pm	6	384	89	7	22	2	0	3	4	3	0	0	0	520
01:00	6	345	103	0	10	0	1	4	0	0	0	0	0	469
02:00	4	352	91	9	11	2	0	1	4	1	1	0	0	476
F. 03:00	8	406	92	6	20	6	0	4	2	0	1	0	0	545
04:00	10	438	123	1	17	7	0	4	3	0	0	0	0	603
1 05:00	7	466	119	1	17	1	0	2	2	1	0	0	1	617
06:00	2	377	99	2	14	0	0	0	0	0	0	0	0	494
07:00	2	289	76	2	6	0	0	2	0	0	0	0	0	377
08:00	1	228	36	0	3	0	0	0	0	0	0	0	0	268
09:00	1	196	30	0	2	0	0	0	0	0	0	0	0	229
10:00	0	125	25	0	1	0	0	0	0	0	0	0	0	151
11:00	0	101	19	0	0	0	0	0	0	0	0	0	0	120
Day Totals	59	5677	1545	54	204	33	2	32	25	10	2	1	2	7646
12:00 10/18	0	47	7	0	1	0	0	0	0	0	0	0	0	55
01:00	0	36	3	0	1	0	0	0	0	0	0	0	0	40
02:00	0	16	2	0	0	0	0	0	0	0	0	0	0	18
03:00	0	16	5	0	2	0	0	0	0	0	0	0	0	23
04:00	0	8	5	0.	3	0	0	1	0	0	0	0	0	17
05:00	0	40	14	0	1	0	0	0	0	0	0	0	0	55
06:00	0	76	33	0	1	0	0	2	1	0	0	0	0	113
07:00	0	157	58	0	2	0	0	0	0	0	0	0	0	217
08:00	0	238	69	2	7	3	0	1	0	1	0	0	0	321
1. 09:00	3	313	101	0	7	4	0	1	0	0	0	0	0	429
10:00	2	440	133	0	11	9	1	1	1	0	1	0	0	599
11:00	7	450	119	4	8	0	0	4	2	1	1	0	0	596
12:00 pm	7	509	134	1	16	2	2	2	0	0	0	0	0	673
01:00	3	474	105	0	5	2	1	2	0	0	0	0	0	592
02:00	3	475	102	0	5	2	0	1	0	0	0	0	0	588
- 03:00	8	439	111	0	10	3	0	0	0	0	0	0	1	572
04:00	3	483	130	0	6	3	1	2	0	0	0	0	0	628
05:00	1	442	112	0	6	2	0	2	0	1	0.	0	0	566
06:00	0	305	53	0	7	0	0	1	0	0	0	0	1	367
$1-07: 00$	2	234	45	0	1	0	0	1	0	0	0	0	0	283
08:00	1	166	35	0	0	0	0	0	0	0	0	0	0	202
09:00	0	159	29	0	1	0	0	0	2	0	0	0	0	191
10:00	0	127	31	0	0	0	0	0	0	0	0	0	0	158
11:00	1	112	19	0	0	0	0	0	0	0	0	0	0	132
Day Totals	41	5762	1455	7	101	30	5	21	6	3	2	\pm	2	7435
Totals	100	11439	3000	61	305	63	7	53	31	13	4	1	4	15081
- Percent	. 6%	75.8\%	19.8\%	.4\%	2. 0\%	. 4 \%	. 0%	. 3 \%	. 2 \%	. 08	. 0%	. 0%	. 0%	

Location : Main 210^{\prime} West of Center
网 City/State: Hanover, MA
Counter : 23
Accurate Counts
508-664-2565
860-282-0223

Site Code : PH002002
Start Date: 10/16/97
File I.D. : PHOO2002
page

Location : Center South of Hanover
Accurate Counts

Site Code : PH002005
Start Date: 10/16/97
File I.D. : PH002005
Page

Location : Center South of Hanover
fity/State: Hanover, MB
Accurate Counts
:ounter : 13
Site Code : PH002005
860-282-0223
Start Date: 10/13/97
File I.D. : PH002005
Page : 1

$\begin{aligned} & \text { legin } \\ & \text { ime } \end{aligned}$	10/13	Mon. Totl	$10 / 14$	Tues. Totl	$10 / 15$	Wed. Totl	$10 / 16$	Thur. Tot 1	$10 / 17$	Fri. Totl	Weekday \qquad	$10 / 18$	Sat. Tot1	$10 / 19$	Sun. Tot 1
12:00 am		*		*		*		30		*	30		*		*
01:00		*		*		*		13		*	13		*		*
)2:00		*		*		*		4		*	4		*		*
33:00		*		*		*		7		*	7		*		*
04:00		*		*		*		29		*	29		*		*
5000		*		*		*		106		*	106		*		*
26:00		*		*		*		131		*	131		*		*
37:00		*		*		*		251		*	251		*		*
08:00		*		*		*		243		*	243		*		*
139:00		*		*		*		237		*	237		*		*
10:00		*		*		*		225		*	225		*		*
11:00		*		*		*		246		*	246		*		*
12:00 pm		*		*		*		249		*	249		*		*
(21:00		*		*		*		266		*	266		\pm		*
02:00		*		*		*		296		*	296		*		*
-03:00		*		*		*		364		*	364		*		*
34:00		*		*		*		398		*	398		*		*
105:00		*		*		*		400		*	400		*		*
06:00		*		*		*		338		*	338		*		*
707:00		*		*		*		224		*	224		*		*
08:00		*		*		*		165		*	165		*		*
09:00		*		*		*		144		*	144		*		*
10:00		*		*		*		55		*	55		*		*
11:00		*		*		*		43		*	43		*		*
/ Totals		0		0		0		4454		0	4464		0		0
/ Avg. WkDay		. 0%		. 0%		. 0%		100.0\%		.0\%			. 0%		. 0%

AM Peaks

$07: 00$	$07: 00$
251	251
$05: 00$	$05: 00$
400	400

ADTs

Location : Route 139 East of Main St
Accurate Counts
Pity/State: Hanover, MA

```
gounter : N4.
860-282-0223
```

Start Date: 10/17/97

JANUS File: PH002001

ADTs

Worksheet for TWSC Intersection
Step 1: RT from Minor Street NB SB
Conflicting Flows: (vph) 510
Potential Capacity: (pcph) 764
Movement Capacity: (pcph) 764
Prob. of Queue-Free State: 0.79
Step 2: LT from Major Street WB EB
Conflicting Flows: (vph) 633
Potential Capacity: (pcph) 856
Movement Capacity: (pcph) 856
Prob. of Queue-Free State: 0.78
TH Saturation Flow Rate: (pcphpl) 1700
RT Saturation Flow Rate: (pcphpl)
Major IT Shared Lane Prob.
of Queue-Free State: 0.66
Step 4: LT from Minor Street NB SB
Conflicting Flows: (vph) 1304
Potential Capacity: (pcph) 186
Major LT, Minor TH
Impedance Factor: 0.66
Adjusted Impedance Factor: 0.66
Capacity Adjustment Factor due to Impeding Movements 0.66
Movement Capacity: (pcph) 122
Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	```Shared Cap (pcph)```	$\begin{gathered} \text { Avg. } \\ \text { Total } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
SB L.	220	122					
			188	507.0	26.1	F	507.0
SB R	157	764					
EB L	188	856		5.4	0.9	B	1.2

Intersection Delay $=98.8 \mathrm{sec} / \mathrm{veh}$

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)		510
Potential Capacity: (pcph)		764
Movement Capacity: (pcph)		764
Prob. of Queue-Free State:		0.79
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)		633
Potential Capacity: (pcph)		856
Movement Capacity: (pcph)		856
Prob. of Queue-Free State:		0.78
TH Saturation Flow Rate: (pcphpl)		1700
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:		0.66
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)		1304
Potential Capacity: (pcph)		460
Major LT, Minor TH		
Impedance Factor:		0.66
Adjusted Impedance Factor:		0.66
Capacity Adjustment Factor		
Movement Capacity: (pcph)		304

Intersection Performance Summary

Movement	Flow Rate (pcph)	$\begin{aligned} & \text { Move } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$	$\begin{aligned} & \text { Shared } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
SB L	220	304	>				
			406	55.8	9.2	F	55.8
SB R	157	764					
EB L	186	856		5.4	0.9	B	1.2

Intersection Delay $=11.4 \mathrm{sec} / \mathrm{veh}$

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)		498
Potential Capacity: (pcph)		774
Movement Capacity: (pcph)		774
Prob. of Queue-Free State:		0.69
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)		598
Potential Capacity: (pcph)		889
Movement Capacity: (pcph)		889
Prob. of Queue-Free State:		0.65
TH Saturation Flow Rate: (pcphpl)		1700
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:		0.53
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)		1235
Potential Capacity: (pcph)		204
Major LT, Minor TH		
Impedance Factor:		0.53
Adjusted Impedance Factor:		0.53
Capacity Adjustment Factor		
due to Impeding Movements		0.53
Movement Capacity: (pcph)		109

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	$\begin{gathered} \text { Avg. } \\ \text { Total } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
SB L	160	109	226	399.6	25.1	F	399.6
SB R	242	774					
EB L	309	889		6.2	1.7	B	2.5
		ersect	ion Del	lay =	87.0 se	c/veh	

HCS: Unsignalized Intersections

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)	260	
Potential Capacity: (pcph)	1022	
Movement Capacity: (pcph)	1022	
Prob. of Queue-Free State:	1.00	
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)	343	
Potential Capacity: (pcph)	1177	
Movement Capacity: (pcph)	1177	
Prob. of Queue-Free State:	0.90	
TH Saturation Flow Rate: (pcphpl)	1700	
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:	0.88	
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)	580	
Potential Capacity: (pcph)	489	
Major LT, Minor TH		
Impedance Factor:	0.88	
Adjusted Impedance Factor:	0.88	
Capacity Adjustment Factor due to Impeding Movements	0.88	
Movement Capacity: (pcph)	433	

Intersection Performance Summary

Movement	Flow Rate (pcph)	$\begin{aligned} & \text { Move } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$		Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
NB L	45	433		9.3	0.3	B	
NB R	1	1022		3.5	0.0	A	9.1
WB L	119	1177		3.4	0.3	A	1.2

[^0]Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)	182	
Potential Capacity: (pcph)	1120	
Movement Capacity: (pcph)	1120	
Prob. of Queue-Free State:	1.00	
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)	239	
Potential Capacity: (pcph)	1319	
Movement Capacity: (pcph)	1319	
Prob. of Queue-Free State:	0.97	
TH Saturation Flow Rate: (pcphpl)	1700	
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:	0.96	
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)	406	
Potential Capacity: (pcph)	616	
Major LT, Minor TH		
Impedance Factor:	0.96	
Adjusted Impedance Factor:	0.96	
Capacity Adjustment Factor		
due to Impeding Movements	0.96	
Movement Capacity: (pcph)	592	

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
NB I	52	592		6.7	0.2	B	
NB R	3	1120		3.2	0.0	A	6.5
WB L	45	1319		2.8	0.0	A	0.5
	Intersection Delay				$0.9 \mathrm{sec} / \mathrm{veh}$		

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)		587
Potential Capacity: (pcph)		698
Movement Capacity: (pcph)		698
Prob. of Queue-Free State:		0.74
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)		591
Potential Capacity: (pcph)		896
Movement Capacity: (pcph)		896
Prob. of Queue-Free State:		0.96
TH Saturation Flow Rate: (pcphpl)		1700
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:		0.92
Step 4: LT from Minor street	NB	SB
Conflicting Flows: (vph)		1374
Potential Capacity: (pcph)		170
Major LT, Minor TH		
Impedance Factor:		0.92
Adjusted Impedance Factor:		0.92
Capacity Adjustment Factor due to Impeding Movements		0.92
Movement Capacity: (pcph)		157

[^1]Intersection Performance Summary

HCS: Unsignalized Intersections Release 2.le
H4SATE. HCO
Page

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)		615
Potential Capacity: (pcph)		676
Movement Capacity: (pcph)		676
Prob. of Queue-Free State:		0.86
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)		618
Potential Capacity: (pcph)		870
Movement Capacity: (pcph)		870
Prob. of Queue-Free State:		0.95
TH Saturation Flow Rate: (pcphpl)		1700
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:		0.92
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)		1324
Potential Capacity: (pcph)		181
Major LT, Minor TH		
Impedance Factor:		0.92
Adjusted Impedance Factor:		0.92
Capacity Adjustment Factor due to Impeding Movements		0.92
Movement Capacity: (pcph)		166

[^2]Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
SB L	79	166					
SB R	92	676	279	31.4	3.5	E	31.4
EB L	45	870		4.4	0.0	A	0.3

Intersection Delay $=3.4 \mathrm{sec} /$ veh

Worksheet for TWSC Intersection
Step I: RT from Minor Street
Conflicting Flows: (vph) 484

Potential Capacity: (pcph) 787
Movement Capacity: (pcph) 787
Prob. of Queue-Free State: 0.72

Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)	487	
Potential Capacity: (pcph)	1005	
Movement Capacity: (pcph)	1005	
Prob. of Queue-Free State:	0.79	
TH Saturation Flow Rate: (pcphpl)	1700	
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:	0.71	
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)	1180	
Potential Capacity: (pcph)	220	
Major LT, Minor TH		
Impedance Factor:	0.71	
Adjusted Impedance Factor:	0.71	
Capacity Adjustment Factor due to Impeding Movements	0.71	
Movement Capacity: (pcph)	155	

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	$\begin{aligned} & \text { Shared } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$	$\begin{gathered} \text { Avg. } \\ \text { Total } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	```95% Queue Length (veh)```	LOS	Approach Delay (sec/veh)
NB L	36	155	>				
			502	14.6	3.0	C	14.6
NB R	223	787	>				
WB L	210	1005		4.5	0.9	A	1.3
		ersec	tion Del	lay =	3.1 se	c/veh	

HCS: Unsignalized Intersections

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)	484	
Potential Capacity: (pcph)	787	
Movement Capacity: (pcph)	787	
Prob. of Queue-Free State:	0.68	
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)	487	
Potential Capacity: (pcph)	1005	
Movement Capacity: (pcph)	1005	
Prob. of Queue-Free state:	0.79	
TH Saturation Flow Rate: (pcphpl)	1700	
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:	0.71	
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)	1180	
Potential Capacity: (pcph)	220	
Major LT, Minor TH		
Impedance Factor:	0.71	
Adjusted Impedance Factor:	0.71	
Capacity Adjustment Factor		
due to Impeding Movements	0.71	
Movement Capacity: (pcph)	155	

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
NB L	9	155					
			689	8.3	1.9	B	8.3
NB R	250	787					
WB L	210	1005		4.5	0.9	A	1.3

Intersection Delay $=2.0 \mathrm{sec} / \mathrm{veh}$

HCS: Unsignalized Intersections Release 2.1d H1PME.HCO Page 2

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)		562
Potential Capacity: (pcph)		719
Movement Capacity: (pcph)		719
Prob. of Queue-Free State:		0.76
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)		696
Potential Capacity: (pcph)		799
Movement Capacity: (pcph)		799
Prob. of Queue-Free State:		0.74
TH Saturation Flow Rate: (pcphpl) RT Saturation Flow Rate: (pcphpl)		1700
Major LT Shared Lane Prob. of Queue-Free State:		0.57
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)		1434
Potential Capacity: (pcph)		156
Major LT, Minor TH		
Impedance Factor:		0.57
Adjusted Impedance Factor:		0.57
Capacity Adjustment Factor due to Impeding Movements		0.57
Movement Capacity: (pcph)		90

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	$\begin{aligned} & \text { Shared } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$	Avg. Total Delay (sec/veh)	```95% Queue Length (veh)```	LOS	Approach Delay (sec/veh)
SB L	242	90	>				
			142	927.5	35.5	F	927.5
SB R	173	719	>				
EB L	206	799		6.1	1.1	B	1.4

Intersection Delay $=180.5 \mathrm{sec} /$ veh

HCS: Unsignalized Intersections Release 2.1d
Γ Step 1: RT from Minor Street NB SB
Conflicting Flows: (vph) 360
Potential Capacity: (pcph) 910
Movement Capacity: (pcph) 910
Prob. of Queue-Free State: 0.86
S Step 2: LT from Major street WB EB
Conflicting Flows: (vph) 487
[Potential Capacity: (pcph) 1005
Movement Capacity: (pcph) 1005
Prob. of Queue-Free State: 0.98
TH Saturation Flow Rate: (pcphpl) 1700
RT Saturation Flow Rate: (pcphpl)
Major LT Shared Lane Prob.of Queue-Free State:0.98
Step 4: LT from Minor Street NB SB
Conflicting Flows: (vph) 555
Potential Capacity: (pcph) 505
Major LT, Minor TH
Impedance Factor: 0.98
Adjusted Impedance Factor: 0.98Capacity Adjustment Factordue to Impeding Movements0.98
Movement Capacity: (pcph) 494
Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	$\begin{aligned} & \text { Shared } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
SB L	237	494	>				
			590	15.7	4.3	C	15.7
SB R	131	910	>				
EB L	20	1005		3.7	0.0	A	0.4
		ersect	tion Del	lay =	5.2 s	c/veh	

HCS: Unsignalized Intersections

Worksheet for TWSC Intersection

Step 1: RT from Minor Street	NB	SB
Conflicting Flows: (vph)	286	
Potential Capacity: (pcph)	992	
Movement Capacity: (pcph)	992	
Prob. of Queue-Free State:	1.00	
Step 2: LT from Major Street	WB	EB
Conflicting Flows: (vph)	378	
Potential Capacity: (pcph)	1132	
Movement Capacity: (pcph)	1132	
Prob. of Queue-Free State:	0.88	
TH Saturation Flow Rate: (pcphpl)	1700	
RT Saturation Flow Rate: (pcphpl)		
Major LT Shared Lane Prob. of Queue-Free State:	0.87	
Step 4: LT from Minor Street	NB	SB
Conflicting Flows: (vph)	638	
Potential Capacity: (pcph)	452	
Major LT, Minor TH		
Impedance Factor:	0.87	
Adjusted Impedance Factor:	0.87	
Capacity Adjustment Factor due to Impeding Movements	0.87	
Movement Capacity: (pcph)	391	

Movement	Intersection Performance Summary						
	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	$\begin{gathered} \text { Avg. } \\ \text { Total } \\ \text { Delay } \\ \text { (sec/veh) } \end{gathered}$	95% Queue Length (veh)	LOS	Approach Delay (sec/veh)
NB L	50	391		10.6	0.4	C	
NB R	1	992		3.6	0.0	A	10.4
WB L	131	1132		3.6	0.4	A	1.2

[^3]Step 1: RT from Minor Street NB SB
Conflicting Flows: (vph) 646
Potential Capacity: (pcph) 652
Movement Capacity: (pcph) 652
Prob. of Queue-Free State: 0.70
Step 2: LT from Major Street WB EB
Conflicting Flows: (vph) 650
Potential Capacity: (pcph) 840
Movement Capacity: (pcph) 840
Prob. of Queue-Free State: 0.95
TH Saturation Flow Rate: (pcphpl) 1700
RT Saturation Flow Rate: (pcphpl)
Major LT Shared Lane Prob.
of Queue-Free State: 0.90
Step 4: LT from Minor Street NB SB
Conflicting Flows: (vph) 1510
141
Potential Capacity: (pcph)
Major LT; Minor TH
Impedance Factor: 0.90

Adjusted Impedance Factor: 0.90Capacity Adjustment Factor$\begin{array}{ll}\text { due to Impeding Movements } & 0.90\end{array}$
Movement Capacity: (pcph) 127
Intersection Performance Summary

Movement		Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
SB	L	164	127	>				
				226	320.3	20.4	F	320.3
SB	R	196	652	>				
EB	L	42	840		4.5	0.0	A	0.2

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	$\begin{aligned} & \text { Shared } \\ & \text { Cap } \\ & \text { (pcph) } \end{aligned}$	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
NB L	8	90					
NB R	177	618	493	11.6	1.8	C	11.6
WB L	295	794		7.2	1.9	B	2.6
		tersec	ion Del	lay =	2.4 se	/veh	

† HCS: Unsignalized Intersections Release 2.1d HIPMA1.HCO Page 1
$===$
Fay, Spofford \& Thorndike, Inc.
20 Park Plaza
Suite 920
Boston, MA 02116-
[Ph: (617) 426-8666

Streets: (N-S) SIEVER STREET
(E-W) ROUTE 139
[Major Street Direction.... EW
Length of Time Analyzed... 15 (min)
Analyst. MJH
Date of Analysis.......... 11/11/97
[Other Information......... 2007 WEEKDAY PM PEAK HOUR ALT 1 W/EE LEMT Two-way Stop-controlled Intersection

TURN L KNE

Adjustment Factors
Vehicle
Critical
Follow-up
Maneuver Gap (tg)

Time (tf)

Left Turn Major Road
Right Turn Minor Road
Through Traffic Minor Road
Left Turn Minor Road
5.00
2.10
5.50
2.60
6.00
*6.50 3.40
Date of Analysis.............11/11/97
Other Information.......2007 WEEKDAY PM PEAK HOUR ALT 1
Two-way Stop-controlied Intersection

Adjustment Factors

Vehicle Maneuver

Critical
Gap (tg)

Follow-up
Time (tf)

Left Turn Major Road
5.00
2.10

Right Turn Minor Road
5.50
2.60

Through Traffic Minor Road
6.00
3.30

Left Turn Minor Road
6.50
3.40

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

\lceil HCS: Signalized Intersection Version 2.4er \quad 01-16-1998 2
Streets: (E-W) ROUTE 139
Analyst: MJH
Area Type: Other
Comment: 2007 PM PEAK HOUR ALTERNATIVE 1 (SIGNIZATION)

Volume Adjustment Worksheet

Saturation Flow Adjustment Worksheet

Ideal

Direction Sat No. f f f f f f fat /LnGrp Flow Lns WV G P BB A RT LT Flow EB

L	1900	1	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.09	175
T	1900	1	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1881
TR	1900	1	1.00	0.99	1.00	1.00	1.00	1.00	0.86	1.00	1626
L	1900	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1805
R	1900	1	1.00	1.00	1.00	1.00	1.00	1.00	0.85	1.00	1615

HCS: Signalized Intersection Version 2.4e
01-15-1998 2

T Streets: (E-W) ROUTE 139
Analyst: MJH
Area Type: Other
Comment: 2007 PM PEAK HOUR ALTERNATIVE 1 (SIGNIZED-LT \& TH LANES SB)

Volume Adjustment Worksheet

Direc-					Lane		Iane		Adj		
tion/	Mvt		Adj	Lane	Grp	No.	Util	Growth	Grp	Prop	Prop
Mvt	Vol	PHF	Vol	Grp	Vol	Ln	Fact	Fact	Vol	LT	RT
EB											
Left	36	0.90	40	L	40	1	1.000	1.000	40	1.00	0.00
Thru	725	0.90	806	T	806	1	1.000	1.000	806	0.00	0.00
WB											
Thru	631	0.90	701	TR	954	1	1.000	1.000	954	0.00	0.27
Right	228	0.90	253								
SB											
Left	268	0.90	298	L	298	1	1.000	1.000	298	1.00	0.00
Right	90	0.90	100	R	100	1	1.000	1.000	100	0.00	1.00

Saturation Flow Adjustment Worksheet

Direction Sat No. f f f f f f fat /LnGrp Flow Lns WV GV p BB A RT LT Flow EB

L	1900	1	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.10	193	
T	1900	1	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1881	
NB								1.00	0.99	1.00	1.00	1.00
TR	1.00	0.86	1.00	1626								
L	1900	1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1805	
R	1900	1	1.00	1.00	1.00	1.00	1.00	1.00	0.85	1.00	1615	

$$
f l t=[f m+0.91(N-1)] / \mathrm{N}
$$

$$
0.12
$$

APPROACH

[Cycle Length, C
Actual Green Time for Lane Group, G
NB
Effective Green Time for Lane Group, g
80
28

- Opposing Effective Green Time, go
29
Number of Opposing Lanes, No 1
Number of Lanes in Lane Group, N
[Adjusted Left-Turn Flow Rate, Vlt
- Proportion of Left Turns in Lane Group, Plt
Left Turns per Cycle: LTC=Vlt*C/3600
Adjusted Opposing Flow Rate, Vo
29
1
7
0.04
0.16
100
2.22
1
3
18.44
0.64
0.00
10.56
0.81
0.04
1.63
0.07
0.99
0.99

APPROACH

Cycle Length, C
SB
Actual Green Time for Lane Group, G
80
Effective Green Time for Lane Group, g 29
Opposing Effective Green Time, go 29
Number of Lanes in Lane Group, N N 1
Proportion of Left Turns in Lane Group, Plt
Proportion of Left rurns in opposing Flow, Plto
Adjusted Left-Turn Flow Rate, Vlt
Left Turns per Cycle: LTC=Vlt*C/3600
0.04
298
6.62
Adjusted Opposing Flow Rate, Vo 168
Opposing Flow per Lane, Per Cycle: Volc=VoC/3600No 3.73
Opposing Platoon Ratio, Rpo
1
3
0.00
0.64
5.37
Lost time per phase, tl
$\mathrm{gf}=\mathrm{Gexp}(-0.882 * \operatorname{LTC} 0.717)-\mathrm{tl}$
Opposing Queue Ratio: gro=1-Rpo (go/C)
$\begin{array}{lr}\text { gu=g-gq (or g-gf) } & 23.63 \\ n=(g q-g f) / 2 & 2.68 \\ \text { Ptho }=1-\text { Plto } & 0.96\end{array}$
$\begin{array}{lr}\text { gu=g-gq (or g-gf) } & 23.63 \\ n=(g q-g f) / 2 & 2.68 \\ \text { Ptho }=1-\text { Plto } & 0.96\end{array}$
Ptho=1-Plto
0.96
2.59
1.68
El1
0.14
fmin=2(1+Pl)/g
$f l t=[f m+0.91(N-1)] / N$

MassHighway
 QUEUE LENGTH ANALYSIS

SIDRA Model by R. Akcelik
 Version 2.0

PROJECT: Hanover
OOCATION:
SCENARIO:
FILE:
JATE:

139/Center
INPUT PARAMETERS

Cycle Length $=$	75 sec.
ehicle Spacing $=$	$25(\mathrm{ft})$.

Units : English (E) Metric $(\mathrm{M})=\mathrm{E}$

Approach	qe Ln Grp Vol (vph)	L Number Lanes	PHF Peak Hr. Factor	S Saturation Flow	Qe Capacity (vph)	Flow Ratio (qe/S)	Ge Eff. Green (sec.)	Unbunched Lane Factor
EBLT	W\%	T- T 1	\% 0.900	221	- 94	0.040	31.9	0.998
EB TH/RT	\%20 693	4-4\% 1	- 0.900	1;874	1 875	0.411	35.0	0.825
VBLT	2-460	- - 11	- 20.900	1,989	336	0.134	12.7	0.936
WB TH/RT			\% 0.000	1,781	1,092	0.446	46.0	0.820
NBLTR	\% 168	, 1	1 +0.900	1,499	543	0.125	27.2	0.954
SBLTE	W + 298	- 1	$\square 0.900$	1,057	383	0.313	27.2	0.921
SBTHIRT	K, ${ }^{2} 100$	- , \% 1	- 0.900	1,755	\%. 636	0.063	27.2	0.973
35 + ${ }^{\text {a }}$	Fat 0	1	$\square 11000$	1,900	0	0.000	ERR	1.000
		1- ${ }^{\text {a }}$ -	20 1.000	- 11,900	0	0.000	ERR	1.000
4, \%	F-ryto	4 4	\% 1.000	- 1,900	0	0.000	ERR	1.000
$\triangle \operatorname{sen}, \quad \mathrm{y}$, Ye-0	W+2\%1	\% 1.000	1,900	4, 0	0.000	ERR	1.000
Wera	- ${ }^{2}$	1,	- 11000	1,900	\%-0	0.000	ERR	1.000

Hanover - 139/Center-2007 PM
January 15,

\lfloor Approach	$\begin{aligned} & \text { Eq. } \\ & \text { Xo } \end{aligned}$	$\begin{gathered} \text { Eq. } \\ \text { X } \end{gathered}$	$\begin{gathered} \text { Eq. } \\ \text { No } \\ \text { (veh.) } \end{gathered}$	Eq. Nu (veh.)	$\begin{gathered} \text { Max. Back } \\ \text { Nb } \\ \text { (veh.) } \end{gathered}$	95th\% Queue (veh.)	Average Q Len./Lane (ft.)	95th\% Q Len./Lane (ft.)
EBLT	0.458	0.095	0.000	0.11	0.11	0.26	3	36
三B TH/RT	0.715	0.880	0.718	15.17	15.89	26.05	397	651
WB LT	0.590	0.794	0.512	5.41	5.92	11.55	148	289
NB TH/RT	0.747	0.728	0.000	12.14	12.14	20.96	303	524
NB LTR	0.650	0.344	0.000	2.88	2.88	6.06	72	152
SBLT	0.606	0.865	0.919	6.63	7.55	14.19	189	355
SB TH/RT	0.671	0.175	0.000	1.59	1.59	3.48	40	87
	ERR							
4	ERR							
	ERR							
	ERR							
	ERR							

Saturation Flow Adjustment Worksheet
Ideal f f f f f f Adj
 /LnGrp Flow Lns W HV G P BB A RT IT Flow EB

L 1900 1900
WB
L 1900
TR 1900
NB
LTR
1900
1
1.00
1.00
1.00
1.00
1.00
1.00
0.80
0.991498

SB
$\begin{array}{llllllllllll}\mathrm{L} & 1900 & 1 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.54 & 1022 \\ \mathrm{TR} & 1900 & 1 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 0.92 & 1.00 & 1755\end{array}$

HCS: Signalized Intersection Version 2.4e 01-15-1998 4
$==$

Streets: (E-W) ROUTE 139
Analyst: MJH
Area Type: Other
Comment: 2007 PM PEAK HOUR ALTERNATIVE
($\mathrm{N}-\mathrm{S}$) CENTER ST SB
File Name: H4PMA2C.HC9
12-16-97 PM
2 (SIGNALIZATION-MINIMUM)

Capacity Analysis Worksheet

	Adj	Adj Sat	Flow		Lane Group	
Direction /LnGrp	Flow Rate (v)	Flow Rate (s)	Ratio (v / s)	Green Ratio (g / C)	Capacity (c)	$\begin{gathered} \text { v/c } \\ \text { Ratio } \end{gathered}$
EB						
L	8	215	0.037	0.467	100	0.080
TR	693	1874	0.370	0.467	875	0.792
WB Lsec.	99	213	0.465	0.467	99	1.000
Lpri.	141	1770	0.080	0.147	260	0.543
Ltot.	240				359	0.669
TR	715	1781	0.401	0.613	1092	0.655
NB						
LTR	168	1498	0.112	0.307	459	0.366
SB						
L	298	1022	0.292	0.307	313	0.951 *
TR	100	1755	0.057	0.307	538	0.186

Lost Time/Cycle, L =
6.0 sec Critical $v / c(x)=0.909$

Level of Service Worksheet
Delay Del Lane Calib Delay Lane Lane Delay LOS Direction $v / c \mathrm{~g} / \mathrm{C} \mathrm{d}$ Adj Group d d Grp Grp By By /LnGrp Ratio Ratio

1 Fact
EB
$\begin{array}{lll}\mathrm{L} & 0.080 & 0.46 \\ \mathrm{TR} & 0.792 & 0.46\end{array}$
WB
$\mathrm{L} \quad 0.669 \quad 0.61$
TR
0.6550 .61
19.60 .850

35916
16
3.3
19.9 C
10.3 B

NB
LTR
0.3660 .307
15.40 .850

SB
$\begin{array}{lrrrrrrrrrr}\mathrm{L} & 0.951 & 0.307 & 19.3 & 0.850 & 313 & 16 & 27.6 & 44.1 & \mathrm{E} & 36.1 \\ \mathrm{TR} & 0.186 & 0.307 & 14.5 & 0.850 & 538 & 16 & 0.0 & 12.4 & \mathrm{~B} & \\ \end{array}$ Intersection Delay $=16.4$ sec/veh Intersection LOS $=C$

HCS: Signalized Intersection Version 2.4e 01-15-1998 5

Streets: (E-W) ROUTE 139 (N-S) CENTER ST SB

Analyst: MJH
File Name: H4PMA2C.HC9
Area Type: Other 12-16-97 PM
Comment: 2007 PM PEAK HOUR ALTERNATIVE 2 (SIGNALIZATION-MINIMUM)
「 $===$ Supplemental Uniform Delay Worksheet

[Approach

Adj. LT Vol (v)
Westbound
v/c ratio (x)
Primary phase effective green
gq from Supplemental IT Worksheet
gu from Supplemental LT Worksheet Red time (r)
Arrivals qa $=v /(3600(\max (x, 1)))$ 240

Primary Ph. Departures $\mathrm{Sp}=\mathrm{s} / 3600$
Secondary Ph. Departures $S s=S(G q+G u) /(G u * 3600)$
0.67

Xperm
11.00
22.04
12.96
29.00

XProt
0.07
0.49
0.16
2.06

Case
Queue at begining of green arrow (Qa)
N/A
2.20

Queue at beginning of unsaturated green (Qu)
3.40

Residual queue (Qr)
0.00

Uniform Delay
19.58
[HCS: Signalized Intersection Version 2.4e 01-15-1998 1
 Fay, Spofford \& Thorndike, Inc.
20 Park Plaza
Suite 920
Boston, MA 02116 (617) 426-8666

Streets: (E-W) ROUTE 139
Analyst: MJH
Area Type: Other
($\mathrm{N}-\mathrm{S}$) CENTER ST SB
File Name: H4PMA2A. HC9
12-16-97 PM
2 (SIGNALIZATION-MINIMUM)

Traffic and Roadway Conditions

No. Lanes Volumes PHF or PK15 Lane W (ft)
Grade \% Heavy Veh Parking Bus Stops Con. Peds Ped Button Arr Type RTOR Vols Lost Time

Signal Operations

Cycle Length: 80 secs Phase combination order: \#2 \#1 \#5

HCS: Signalized Intersection
Version 2.4 e
01-15-1998 3

Streets: (E-W) ROUTE 139
(N-S) CENTER ST SB
Analyst: MJH
File Name: H4PMA2A.HC9
Area Type: Other 12-16-97 PM
Comment: 2007 PM PEAK HOUR ALTERNATIVE 2 (SIGNALIZATION-MINIMUM)

Supplemental Permitted LT Worksheet

APPROACH

Cycle Length, C
Actual Green Time for Lane Group,
Effective Green Time for Lane Group g
Opposing Effective Green Time, go
Number of Opposing Lanes, No
Number of Lanes in Lane Group, N
Adjusted Left-Turn Flow Rate, Vlt
Proportion of Left Turns in Lane Group, Plt
Left Turns per Cycle: LTC=Vlt*C/3600
Adjusted Opposing Flow Rate; Vo
Opposing Flow per Lane, Per Cycle: Volc=Voc/3600No
Opposing Platoon Ratio, Rpo
Lost time per phase, tl
$\mathrm{gf}=\mathrm{Gexp}\left(-0.882 * \operatorname{LTC}^{\wedge} 0.717\right)-\mathrm{tl}$
Opposing Queue Ratio: qro=1-Rpo (go/C)
$\mathrm{gq}=\mathrm{Volc} *$ qro / (.5 -Volc * (1 - qro) / go)-tl
gu=g-gq (or g-gf)
$\mathrm{fs}=(875-0.625 \mathrm{Vo}) / 1000$
$\mathrm{Pl}=\mathrm{Pl} \mathrm{t}[1+\{(\mathrm{N}-1) \mathrm{g} /(\mathrm{fs*} \mathrm{gu}+4.5)\}$
El1
fmin
fm, (min=fmin; $\max =1.00$)
flt $=[f m+0.91(N-1)] / N$

APPROACH

Cycle Length, C
Actual Green Time for Lane Group, G 44
Effective Green Time for Lane Group, g 34
Opposing Effective Green Time, go 34
$\begin{array}{ll}\text { Number of Opposing Lanes, No } & 1 \\ 1\end{array}$
Number of Lanes in Lane Group, N 1
Adjusted Left-Turn Flow Rate, Vlt 240
Proportion of Left Turns in Lane Group, Plt
Left Turns per Cycle: LTC=Vlt*C/3600
Adjusted Opposing Flow Rate, Vo
Opposing Flow per Lane, Per Cycle: Volc=VoC/3600No
Opposing Platoon Ratio, Rpo
Lost time per phase, tl
$\mathrm{gf}=\mathrm{Gexp}(-0.882 * \operatorname{LTC} 0.717)-\mathrm{tI}$
Opposing Queue Ratio: qro=1-Rpo(go/C)
gq = Volc * qro / (.5 - Volc * (1 - qro) / go)-tl
$g u=g-g q$ (or g-gf)
$\mathrm{f}_{\mathrm{S}}=(875-0.625 \mathrm{VO}) / 1000$
Pl=Plt $[1+\{(N-1) g /(f s * g u+4.5)\}]$
ElI
fmin
fm, (min=fmin; max=1.00)

EB
80
33
34
45
1
1
8
1.00
0.18

715
15.89

1
3
0.00
0.44
20.06
13.94
0.43
1.00
8.20
0.12
0.12
0.12

WB

80
44

1. 00
5.33

693
15.40

1
3
0.00
0.57
25.80
8.20
0.44
1.00
8.20
0.12
0.12

Streets: (E-W) ROUTE 139
Analyst: MJH
Area Type: Other
(N-S) CENTER ST SB
File Name: H4PMA2A.HC9
12-16-97 PM
Comment: 2007 PM PEAK HOUR ALTERNATIVE 2 (SIGNALIZATION-MINIMUM)
$==$
Supplemental Uniform Delay Worksheet
Approach
Adj. LT Vol (v)
Westbound
v / c ratio (x)
Primary phase effective green
gq from Supplemental LT Worksheet
gu from Supplemental LT Worksheet
Red time (r)
Arrivals qa $=v /(3600(\max (x, 1)))$
Primary Ph. Dèpartures $S p=s / 3600$
Secondary Ph. Departures $\mathrm{Ss}=\mathrm{S}(\mathrm{Gq}+\mathrm{Gu}) /(\mathrm{Gu*3600})$
Xperm
XProt
Case
Queue at begining of green arrow (Qa)
Queue at beginning of unsaturated green (Qu)
Residual queue (Qr)
Uniform Delay
0.71
11.00
25.80
8.20
35.00
0.07
0.49
0.25
2.22

N/A
5
2.53
4.05
0.00
22.48

Approach	qe Ln Grp Vol (vph)	L Number Lanes	PHF Peak Hr. Factor	S Saturation Flow	Qe Capacity (vph)	Flow Ratio (qe/S)	Ge Eff. Green (sec.)	Unbunched Lane Factor
星EBTH:	V. 846	+ 4 \%1	\% 0.900	, 1,881	1,223	0.500	39.0	0.791
WBTH	T6ta6 627		- 0.900	- 1,881	$\cdots 1,223$	0.370	39.0	0.840
SB ETu	Were 404	\% $x^{4} 1$	2-10.900	- 1,805	- 451	0.249	15.0	0.894
SBRT	+2 346		Y 0.900	\% 1,615	404	0.238	15.0	0.908
- M Wata	Where	W, 1	1 0.900	, 0°	0	ERR	ERR	1.000
5ayky	W2490	- +1	\%-0.900		0	ERR	ERR	1.000
		W+6 1	\% 0.900		0	ERR	ERR	1.000
	- 40	\% Sa	- 1000	$\cdots 1,900$	0	0.000	ERR	1.000
$\log ^{2}, \mathrm{~L},$	+2, 0	W-1	\% 111000	\% 1,900	$\therefore 0$	0.000	ERR	1.000
	- 20	+ ${ }^{\text {a }} 1$	- 1.000	1,900	0	0.000	ERR	1.000
$2+2 y$	4	1	-1.000	1,900	0	0.000	ERR	1.000
.4. 4 4,	4, \% 0	4, 1	W. 1.000	2 1,900	0	0.000	ERR	1.000

Hanover - 139/Center - 2007 PM
January 15,

Approach	$\begin{aligned} & \text { Eq. } \\ & \text { Xo } \end{aligned}$	$\begin{gathered} \text { Eq. } \\ \text { X } \end{gathered}$	$\begin{gathered} \hline \text { Eq. } \\ \text { No } \\ \text { (veh.) } \\ \hline \end{gathered}$	Eq. Nu (veh.)	$\begin{gathered} \text { Max. Back } \\ \text { Nb } \\ \text { (veh.) } \end{gathered}$	95th\% Queue (veh.)	Average Q Len./Lane (ft.)	95th\% Q Len./Lane (ft.)
EB TH	0.731	0.769	0.089	11.54	11.63	20.25	291	506
VB TH	0.731	0.570	0.000	6.72	6.72	12.87	168	322
SBLT	0.599	0.995	3.377	7.67	11.05	19.43	276	486
3 BRT	0.586	0.952	2.192	6.47	8.66	15.92	217	398
L	ERR							
0	ERR							
0	ERR							
	ERR							
	ERR							
	ERR							
+	ERR							
	ERR							

ΓHCS: Signalized Intersection Version 2.4er \quad 01-15-1998 3 Streets: (E-W) ROUTE 139
(N-S) CENTER ST SB
Analyst: MJH
Area Type: Other
File Name: H4PMA3.HC9
12-16-97 PM
Comment: 2007 PM PEAK HOUR ALTERNATIVE 3

Capacity Analysis Worksheet

$\begin{aligned} & \text { Direction } \\ & \text { /InGrp } \end{aligned}$	Adj Flow Rate (v)	Adj Sat Flow Rate (s)	Flow Ratio (v/s)	$\begin{aligned} & \text { Green Ratio } \\ & (\mathrm{g} / \mathrm{C}) \end{aligned}$	Lane Group Capacity (c)	v/c Ratio
EB						
T	846	1881	0.450	0.583	1097	0.771 *
WB ${ }^{\text {T }}$	627	1881	0.333	0.583	1097	0.571
NB						
L	404	1805	0.224	0.317	572	0.707
R	346	1615	0.214	0.317	511	0.677

Lost Time/Cycle, L =
6.0 sec

Sum (v/s) critical $=0.674$

Level of Service Worksheet

Direction /LnGrp	$\begin{gathered} \text { v/c } \\ \text { Ratio } \end{gathered}$	g/C Ratio	Delay d 1	Del Adj Fact	Lane Group Cap	Calib d 2	Delay d 2	Lane Grp Del	Lane Grp LOS	Delay By App	LOS By App
EB											
T	0.771	0.583	7.2	0.850	1097	16	2.4	8.5	B	8.5	B
WB											
T	0.571	0.583	5.9	0.850	1097	16	0.5	5.6	B	5.6	B
$\begin{aligned} & \text { NB } \\ & \text { SB } \end{aligned}$											
L	0.707	0.317	13.7	0.850	572	16	2.8	14.4	B	14.2	B
R	0.677	0.317	,	0.850	511	16	,	14.0	B		

HCS: Signalized Intersection Version 2.4e 01-16-1998 3
 Streets: (E-W) ROUTE 139
Analyst: MJH
Area Type: Other
(N-S) CENTER ST SB
File Name: H4PMA3D.HC9
12-16-97 PM
Comment: 2007 PM PEAK HOUR ALTERNATIVE 3

Capacity Analysis Worksheet

	Adj	Adj Sat	Flow		Lane Group		
Direction /LnGrp	Flow Rate (v)	Flow Rate (s)	Ratio (v / s)	Green Ratio (g/C)	Capacity (c)	$\begin{gathered} \text { v/c } \\ \text { Ratio } \end{gathered}$	
EB							
T	846	1881	0.450	0.683	1285	0.658	*
WB							
T	627	1881	0.333	0.683	1285	0.488	
NB							
SB							
L	404	1805	0.224	0.217	391	1.033	*
R	346	1615	0.214	0.217	350	0.989	
			Sum (v/s) critical	$=0.674$		
Lost Time/	Cycle, $\mathrm{L}=$	6.0 sec	Criti	cal v/c (x)	$=0.748$		

Level of Service Worksheet

Direction /LnGrp	v/c	g/c Ratio	$\begin{gathered} \text { Delay } \\ \mathrm{d} \\ 1 \end{gathered}$	Del Adj Fact	Lane Group Cap	$\begin{gathered} \mathrm{Calib}_{2} \\ \mathrm{~d}_{2} \end{gathered}$	$\begin{gathered} \text { Delay } \\ { }_{2} \\ 2 \end{gathered}$	Lane Grp De1	Lane Grp LOS	Delay By App	$\begin{aligned} & \text { LOS } \\ & \text { By } \\ & \text { App } \end{aligned}$
EB											
T	0.658	0.683	4.2	0.850	1285	16	0.9	4.4	A	4.4	A
WB											
T	0.488	0.683	3.4	0.850	1285	16	0.2	3.2	A	3.2	A
NB											
SB											
L	1.033	0.217	17.9	0.850	391	16	44.5	59.7	E	54.9	E
R	0.989	0.217	17.8	0.850	350	16	34.1	49.3	E		
		nterse	tion D	Delay	21.1	$\mathrm{sec} / \mathrm{v}$	reh Int	tersect	tion	LOS $=$	C

Intersection Performance Summary

Movement

EB L

Avg.
95\%

Intersection Delay $=0.9 \mathrm{sec} / \mathrm{veh}$

Worksheet for TWSC Intersection
Step 1: RT from Minor Street NB SB
Conflicting Flows: (vph) 416
Potential Capacity: (pcph) 852
Movement Capacity: (pcph) 852
Prob. of Queue-Free State: 0.57Intersection Performance SummaryAvg. 95\%

Flow	Move Shared Total Queue	Approach				
Rate	Cap	Cap	Delay	Length LOS	Delay	
(pcph)	(pcph)	(pcph)	(sec/veh)	(veh)		(sec/veh)

Intersection Delay = $2.8 \mathrm{sec} / \mathrm{veh}$

Intersection Performance Summary

Movement	Flow Rate (pcph)	Move Cap (pcph)	Shared Cap (pcph)	Avg. Total Delay (sec/veh)	95\% Queue Length (veh)	LOS	Approach Delay (sec/veh)
EB L	337	1132		4.5	1.4	A	2.5
	Intersection Delay				$1.5 \mathrm{sec} / \mathrm{veh}$		

[Boston, MA 02116-
Ph: (617) 426-8666

Streets: ($\mathrm{N}-\mathrm{S}$) CENTER ST (NB)
(E-W) ROUTE 139
[Major street Direction.... EW
Length of Time Analyzed... 15 (min)
Analyst. MJH
[Date of Analysis.......... 11/11/97
Other Information......... 2007 WEEKDAY PM PEAK HOUR ALTERNATIVE 3 Two-way Stop-controlled Intersection

Adjustment Factors

Vehicle
Maneuver

Critical
Follow-up
Gap (tg) Time (tf)
Left Turn Major Road
Right Turn Minor Road
Through Traffic Minor Road
Left Turn Minor Road
5.00
2.10

Left Turn Major Road
5.50
2.60

Through Traffic Minor Road
6.00
3.30

Left Turn Minor Road
Analyst.................... . MJH

```
Date of Analysis........... 11/11/97
```

Other Information........ 2007 WEEKDAY PM PEAK HOUR ALTERNATIVE 4
Two-way Stop-controlled Intersection

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

 Fay, Spofford \& Thorndike, Inc.
20 Park Plaza
Suite 920
Boston, MA 02116-
Ph: (617) 426-8666
===12 Streets: (N-S) SILVER ST
(E-W) MAIN ST
[Major Street Direction.... EW
Length of Time Analyzed... 15 (min)
Analyst............................

Date of Analysis.......... 12/17/97
Other Information......... 2007 WEEKDAY PM PEAK HOUR ALTERNATIVE 4
Two-way Stop-controlled Intersection

Adjustment Factors
Vehicle
Critical
Follow-up
Maneuver
Gap (tg)
Time (tf)

Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

	Northbound			Southbound			Eastbound			Westbound		
	L	T	R	L	T	R	L	T	R	L	T	R
No. Lanes	0	0	0	0		0	0	0	1	0	0	0
Stop/Yield			N			N						
Volumes					364				761			
PHF					. 95				. 95			
Grade					0							
MC's (\%)												
SU/RV's (\%)												
CV's (\%)												
PCE's									1.10			

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Two-way Stop-controlled Intersection

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.00	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.00	3.30
Left Turn Minor Road	6.50	3.40

Hanover Town Center 1993-1995
 Reported Accident Data

Case \#	Type	Date	Hour	\#Veh.	\#in].	\#KIII.	Veh. Dir.	Manner	Llght	Weather	Surface	Major Street	Minor Street
2074563	Prop	1/23/93	16	2	0	0	ES	Angle	Daytight	Clear	No_Defects	MAIN	RTE 139
2085182	Inju	2/8/93	13	2	1	0	W W	Rear_end	Daylight	Clear	No_Defects	CENTER ST	RT 139
2125234	Inju	4/23/93	21	1	2	0	N	Unknown	Darkness	Clear	No_Defects	CENTER ST	MAIN ST
2164828	Inju	7/12/93	9	2	1	0	EE	Rear_end	Daylight	Clear	No_Defects	CENTER ST EXT	HANOVER ST RT 139
2197445	Prop	9/21/93	8	2	0	0	WE	Angle	Daylight	Clear	No_Defects	MAINE SILVER	
2240851	Prop	12/2/93	19	2	0	0	EW	Angle	Darkness	Clear	No_Defects	MAIN ST.	RTE. 139
2289831	Prop	2/15/94	20	2	0	0	W S	Angla	Darkness	Cloud	No_Defects	HANOVER ST	MAIN ST
2343848	Prop	5/22/94	12	2	0	0	WW	Rear_end	Daylight	Clear	No_Defects	CENTER ST	139
2336840	Prop	5/24/94	16	2	0	0	EW	Angle	Daylight	Clear	No_Defects	MAIN ST. RT, 139	
2347193	Inju	6/4/94	14	2	1	0	S W	Angle	Daylight	Clear	No_Defects	HANOVER ST	MAIN ST
2344342	Prap	6/11/94	10	3	0	0	W W	Rear_end	Daylight	Clear	No_Defects	CENTER	HANOVER ST
2353619	Prop	6/29/94	13	2	0	0	NE	Angle	Daylight	Cloud	Na_Dafects	CENTER ST	RT 139 HANOVER ST
2362141	Prop	7/15/94	18	2	0	0	EE	Rear_end	Daylight	Cloud	No_Defects	CENTER ST.	HANOVER ST.
2378316	Prop	8/19/94	13	2	0	0	NS	Angle	Daylight	Cloud	No_Defects	CENTER ST	RT 139
2405417	Prop	10/11/94	14	3	0	0	NN	Rear_end	Daylight	Clear	No_Defects	CENTRE STREET	MAIN STREET
2429526	Prop	11/19/94	14	2	0	0	SW	Angle	Daylight	Clear	No_Defects	HANOVER ST	MAIN ST
2463939	Prop	1/30/95	17	2	0	0		Unknown	Not_Spec	Other	Unknown	MAIN ST	RT 133
2497581	Prop	4/5/95	16	2	0	0	WW	Rear_end	Daylight	Clear	No.Defects	CENTER ST.	HAMOVER ST./RTE.
2502849	Prop	4/19/95	15	2	0	0	W W	Angle	Daylight	Rain	No_Defects	CENTER ST.	RTE. 139
2522095	Prop	4/28/95	21	2	0	0	NS	Angle	Not_Spac	Cloud	No_Defects	CENTER ST	MAIN ST
2565013	Prop	7/20/95	9	2	0	0	EN	Angle	Daylight	Clear	No_Defects	CENTER ST	HANOVER ST
2559925	Inju	8/7/95	24	1	1	0	N	Unknown	Daylight	Clear	No_Defects	CEMETERY	CENTRALMAIN STS
2555444	Inju	7/28/95	12	2	3	0		Angle	Daylight	Clear	No_Defects	RTE 139 MAIN ST	SILVER ST
2570011	Inju	8/18/95	18	2	1	0	WE	Angle	Not_Spec	Clear	No_Defects	HANOVER ST RT 139	MAIN ST
2607480	Prop	11/7/95	18	2	0	0		Angle	Darkness	Rain	No_Defects	HANOVER ST	MAIN ST

Warrant 8 - Combination of Warrants

Meets 80% of Warrants 1 and 2. Yes X_No \qquad

Satisfied? Yes X^{X} No \qquad
Warrant9 - Four Hour Volumes

Meets plotted values:
GENERAL
LESS THAN 10,000 POPULATION OR 40+ MILES PER HOUR MAJOR STREET

Top Lines

2 lanes major \&
2 lanes minor
Middle Lines
2 lanes major
1 lane minor
Bottom Lines
1 lane major \&
1 lane minor

Warrant 10 - Peak Hour Delay
a) Exceeds 4 vehicle hours on one lane minor street approach
b) Exceeds 5 vehicle hours on two lane minor street approach
and 100 vehicles per hour for one lane; 150 vehicles per hour for two lanes.
and total entering volumes exceed 650 vehicles per hour for three approaches or 800 vehicles per hour for four approaches.

Warrant 11- Peak Hour Volume
Meets plotted values:

Fay, Spofford \& Thomdike, Inc.
Engineers Planners - Scientists
Satisfied? Yes X No

Warrant 8 - Combination of Warrants
Meets 80% of Warrants 1 and 2 . Yes X No \qquad

Warrantg - Four Hour Volumes

Meets plotted values:
GENERAL
LESS THAN 10,000 POPULATION OR $40+$ MILES PER HOUR MAJOR STREET

Top Lines
2 lanes major 8
2 lanes minor
Middie Lines
2 lanes major \&
1 lane minor
Bottom Lines
1 lane major \&
1 lane minior

Satisfied? Yes X No \qquad

Warrant_10-Peak Hour Delay
a) Exceeds 4 vehicle hours on one lane minor street approach
b) Exceeds 5 vehicle hours on two lane minor street approach
and 100 vehicles per hour for one lane; 150 vehicles per hour for two lanes.
and total entering volumes exceed 650 vehicles per hour for three approaches or 800 vehicles per hour for four approaches.
\qquad No X

Warrant 11 - Peak Hour Volume
Meets plotted values:

GENERAL

LESS THAN 10,000 POPULATION OR 40+ MILES PER HOUR MAJOR STREET

Fay, Spofford \& Thorndike, Inc.

Fay, Spofford \& Thomdike, Inc.
Engineers - Planners Scientists

Collision Diagram

Intersection	Town Center Streets and	and
Period	1994 from 1/1/94	to $12 / 31 / 94$
City or Town	Hanover, Massachusetts	Prepared By $\overline{\text { GLH }}$
Date Prepare		

Schematic: NOT TO SCALE

Number of Accidents	Symbols	Types Of Collisions	Data For Each Accident
9 Property			1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL
$\begin{array}{ll}\text { Damage Only } \\ 1 & \text { Injury }\end{array}$			
0 Fatal		Out of Control	
10 TOTAL		Left Turn Right Angle	

Fay, Spofford \& Thorndike, Inc.
Engineers - Planners - Scientists
Collision Diagram
Intersection \qquad Hanover Town Center
and \qquad Period

1 year from 6/1/96 \qquad to $\quad 5 / 30 / 97$ City or Town Hanover, Massachusetts Date Prepared 11/16/97

Number of Accidents	Symbols	Types Of Collisions	Data For Each Accident
9Property Damage Only $=$ Injury Fatal FOTALTOT			1. TIME, DAY, DATE 2. WEATHER AND ROAD SURFACE IF UNUSUAL

Hanover Center - Route 139 Hourly Traffic Variations October 17, 1997

Hanover Center - Main Street Traffic Volumes October 16, 1997

Hanover Town Center WB Route 139 Speeds Friday, October 17, 1997

Hour Beginning

AGENDA

Town of Hanover Town Center Traffic Study Department of Public Works
 Public Meeting 1

November 12, 1997
7:30 PM Main Hearing Room
Hanover Town Hall

Introduction - Gary L. Hebert, P.E., Fay, Spofford \& Thorndike, Inc.

Discussion of Study Objectives and Expectations

Data Collection Findings

Automatic Traffic Recorder Counts
Traffic Observations - Weekday Vs. Saturday Manual Traffic Counts

Accident Analysis (1993-95)

Informal Discussion of Alternatives To Be Considered

Next Steps

Schematic Illustration

Fay, Spofford \& Thorndike, Inc. Engineers - Planners © Sclentists

Rte. 139 WB PM Peak Hour Distribution Hanover Town Center Traffic Study Hanover, MA

Schematic Illustration

Fay, Spofford \& Thorndike, Inc. Engineers • Planners • Scientists

Main Street PM Peak Hour Distribution
Hanover Town Center Traffic Study
Hanover, MA

Schematic Illustration

Fay, Spofford \& Thorndike, Inc. Engineers Planners Scientists

Silver Street PM Peak Hour Distribution Hanover Town Center Traffic Study Hanover, MA

Board of Public Works, April 1, 1998

Attendance: Michael Gallant, BPW
John Homan, BPW
Benjamin Kruser, BPW
Michatl Racicot, DPW
Nancy Jacobson, DPW
James Toomey, Town Counsel
List attached for Town Center Study Meeting

DPW Administration:

1. The aeetirg began at $7: 00 \mathrm{PM}$ and was adjoumed at $10: 45 \mathrm{PM}$.
2. The Board signed bills and reviewed correspondence.
3. MIIA, thic Town's insurance cartier, held a safery meeting at the Highway Garage on "Preventing Slips \& Falls".
4. The Buard approved the minutes of the March 16,1998 and March 18,1998 meetings.
5. Mr. Homan moved to go into Executive Session to discuss an issue in litigation. Mr. Kruser, Mr. Gallant, and Mr. Homani voted to go into Executive Session at 9:45 PM and to reopen into Open Session. Mr. Toomey, Mr. Racicor, and Mrs. Jacobson were invited to the Executive Session. The Board reopened the Open Session at 10:15 PM.

Highway:

1. Mr. Racicot spoke with Mr. Caputo of Coler \& Colantonio regarding the design fee for Webster St. He stressed that the Board expects the project completed for the agreed upon fee. Mr. Racicot also requested the list of properties that will require easements.
2. The employees are working on repairs to catchbasins, manholes and gateboxes on streets thar will be resurfaced this year. The main focus has been on Old Town Way and Main St. Basins and new drain lines have been added along some streets in areas which were questionable.
3. Mr. Racicor spoke with Mr. Perry of WATD giving the BPW's side of the Towa Center Study. Mr. Perry had stopped and talked to Mr. Finneran, when he saw him out with the "Save our Ballfield" sign.
4. At the Conservation Agent's request the department filed a Notice of Intent to clean the brook along Ames Way. The hearing is scheduled for tonight at $8: 30 \mathrm{PM}$. Mr. Racicot went to the Conservation Commission Meeting at 8:30, bu! the Commission was involved with another issue.
5. Mr. Homan does not want sidewalks dumped on the DPW. Mr. Gallant is concerned that people do not understand the process that needs to occur. He feels that the Planning Board is putting the cart before the horse. It was decided that the Planning Board will be asked to meet with the BPW for a two hour block of time in the near future to discuss sidewalk issues.
6. Because of the need to get Main St. repaired, the Board has decided not to put in a sidewalk at this time. Issues that would have to be dealt with before a sidewalk is put in inclucte: the need of a survey, stone walls, trees, property owners, and the fact thar Main St. is a scenic road. A sidewalk can be put in, if the Sidewalk Committee vores for one.
7. Mr. Kruser began the Town Center Study Meeting by giving an overview of the project to this point.
8. Mr. Hebert expanded on Mr. Kruser's overview and described the advantages of Alternative 2 including: more gren space; two intersections instead of five; the turn from Route 139 to Silver St. would be sharpened to slow down traffic; and new sidewalks. Center St. would be realigned with lights. There would be no lights at Route 139 and Silyer Si There would be a crosswalk at the church, and new sidewalks in the green area. The ball field could be moved to the new green space. He emphasized the current danger of accidents. Most of the accidents oceur where Main St. and Silver St. merge.
9. Mr. Kruser continued by addressing the concerns raised at the previous meeting The first concern he addressed was the grading by the Dougherty's house. Mr. Kruser pointed out the topographical survey ithe Board had done. There is a $41 / 2$ to 5 foot drop. The road would have to be raised 4 feet to meet Route 139. The road drainage could be piped from the road down Main St. to the wetlands, causing no problem for the Dougherty's.
10. The second concern Mr. Kruser addressed was losing the ball field. If Alternative 2 is used, the ball field could be moved to the new green space, or be moved to another docation in town. The BPW is proposing a reconfiguration of the road, not eliminating the ball field. The aesthetics can be preserved.

1i. The third concern Mr. Kruser addressed was the traffic signals. Ha showed a sketch of how the poles could be ornamental. Other catalogs were available to look at.
12. Mr. Kruser said that there would be no impact on the church's cess pool, since the work would not be near enough or deep enough to affect the cess pool.
13. Mrs. Paul, the daughter of the Dougherty's, felt that the scale is off on Altemative 2. It iooks like a huge area, but the road would be under her parent's window. She felt that a letter should have been sent to her parents outlining the Board's ideas. Mr. Kruser stated that the drawings were based on a topographical survey.
14. Mrs. Dougherty said that the signals should be put where the problem already exists at Silver St. and Route 139. Eventually there would be two lights within 300 feet. Alternative 2 does not address the problem. Mr. Kruser explained that there would be a change from 5 to 2 intersections. The traffic pattern would change at Silver St. Mr. Hebert said that in ten years the Silver St. intersection would still be a Level C with Alternative 2 , which is still good. Mr. Hebert also explained that the curvature of Main St. by the intersection would not allow for clear visibility tor a siganal, and the problem at Silver and Main Sts. would still exist.
15. Mrs. Rose asked how Mr. Hebert knew that so many of the accidents happened with drivers coming down Main St. Now drivers coming down Main St. have a choice to turn onto Route 139 from Center St. or Silver St.
16. Mrs. Bruynoli bad several questions about the study. She referenced an E-1 traffic claart and asked about traffic counts at Silver St. and Route 139. She asked what the peak hours are. They are from 5:00 106:00 PM on weekdays. She asked what the queuc would be on Main St. Mr. Hebert indicated that it would be 11 or 12 cars

Peading:

1. DPW Administration
2. Highway
A. Setting up and implementing a town-wide GIS system
B. Computerization of fleet records and a data base on repairs and preventative maintenance
3. Snow and Ice.
4. Park
A. Park \& Recreation expansion - work with Park \& Recreation to get funding for increased maintenance
5. Comctery
A. Regulations updare - do in August
B. Review capacity on master plan and assess long torm needs
C. Burial of indigents under MGL 114
6. Water
A. Aquifer Protection Zone compliance - need list of businesses in zone with current compliance -non-compliance status
B. Parts stores and gas stations - need list of what they store and how disposed of to monitor - could bc: part of WQCC monitoring
C. Backflow preventer installation status
D. Treatment of Broadway and Hanover Street wells
E. Management plan for treatment plant sludge
F. Wastewater treatment, especially in the Aquifer Frotection District and commercial zones, done in conjunction with the Board of Health
7. Transfer Station
A. Operations
B. Curb side collection of waste using contracred services. Use station for recycling and composting.
8. Developments
A. Rewrite Subdivision Rules and Regulations with the Planning Board, providing sectional details

Scheduling:

1. The next Board of Public Works meeting will be held on Wednesday, April 15,1998 in the Water Treatment Plant at 7:00 PM.
with worst case scenario. She asked who would pay for signals. Mr. Kruser stated that the project would be a State or State/ Federal TIP project. Mrs. Brugnoli said that the State promised lights for Shaw's, but they have never been seen. She also asked about the four trees on Route 139. Mr. Kruser said that some of them would go. Mrs. Brugnoli felt that all of them would go.
2. Mr. Briggs indicated that the Yown center is in no worse shape than many town centers. It is better than Bridgewater. He asked why blocking off Main St. for a couple of weeks wasn't tried like it was in 1982. A couple of barrels is all that is needed. The issue with Alternative 2 is a quality of life issue. The relocared road would be too close to the Doughercy's house. The Board is trying to reinvent the wheel. He guesses that 75% of the traffic on Main St. uses Center St. to turn onto Route 139. He hopes Town Meeting turns down the proposal. He suggested having accurate plans for Town Meeting. Mr. Kruser belicves that purting in barrels to block Main St. in back of the church is hazardous. Signs would be needed.
3. Mr. Casey pointed out that Silver $\$ \mathrm{St}$. does not intersect with Route 139, Main St. does. He mentioned that there are probably 9 million trees in Hanover. The four at the ball field are the ugliest trces in town in winter. He feels that the ball field should be dumped, because there are unused ficlds at Center School.
4. Mrs. Ryerson praised the Board's efforts, but she is against Alternative 2. If the road is moved to the fence, people will have to look at the gas station when they come out Main St. She likes to look at Town Hall and the church. The ambiance would be destroyed with Altemative 2.
5. Mr. Thomson was concerned that, when the project is done it, it won't look like the plan. He is concerned that the State will take control of the design. He is also concemed that lights will increase the speed, because people will try to run the lights. He felt that Main St. could be closed for a trial period with blinking barrels. His recommendation is that the roads be left the way they are. He's not convinced that Altemative 2 would be an improvement. Mr. Kruser commented that the State would pay for the project, but that the Town would do the design with State approval.
6. Mrs. Paulin asked the time of day of accidents. Mr. Hebert indicated that they were spread out according to the volume of traffic. The rucords he cbtained from the Police Department wese for a 4 year period.
7. Mrs. Hannigan asked what the elevation would be of the new section of Main St. It seems that the new section would be 110 to 111 . The existing is 112 . Sbe is concemed about the drainage. She feels that the bottom line is courtesy. Everybody needs to slow down a linle bit.
8. Mrs. Maibach feels that the drainage will end up in her front yard.
9. Mr. Teriecki suggested running computer models on the blocked off section of Main St. He suggested lights at Spring St. and Grove St. to slow down the traffic. He also emphasized courtesy. Mr. Kruser stated that the Town camot control the speed on a State road. He also indicated that Mr. Hebert's scope of work did not include Spring St. and Grove St. Mr. Hebert said that he had looked at only blocking Main St. There would be some improvement, but not significant. It would not offer the same level of safety as Altemative 2.
10. Mr. Roach, the Safery Officer, said that uhe State will not lower the speed on Route 139. A pedestrian light at the library is possible. Most of the accidents are angle accidents, because people don't wait.
11. Mr. Dillon indicated that his concerns are the same as other residents. The number of accidents do not seem out of line. He suggested putting a police officer at the center to direct traffic. Mr. Kruser said he does not know why a police officer isn't used. Mr. Roach said that there is too much traftic for a police officer. Mr. Hebert believes that the accidents happen many hours of the day, making it difticult to use a police officer.
12. Mr. Elliott suggested blocking off the street on a trial basis before Town Meeting. Mr. Kruser reiterated that it was unsafe and said that MA Highway approval would be needed.
13. Mrs. DiNatale, a rcsident and Quincy police officer, said that in her experience most tatal accidents occur at intersections. She suggested that the accident rates at other intersections like Routes 139 and 53 be looked at.

Mr. Kruser said that that was not in funding. Mrs. DiNatale said that the public information statistics could be obtained at no cost. Mr. Kruser stated that the statistics would still have to be analyzed.
29. Mr. Lewald indicated that having a police detail in the center would be a manpower problem, but mighi be helpful. There are no major tie-ups at the intersections. The Board of Selectmen had presented similar plans 5 years ago, and they were turned down. The DPW refuses to temporarily block off behind the church to diminish the intersections.
30. Mr. Finneran said, "We don't want it". The ball field is part of the history of the town. Duxbury and Norwell are laughing. The center is our front yard.
31. Mrs. Hannigan asked what statute Mr. Kruser was citing about notifying the State, if a road is blocked off. Mr. Kruser said it is a courtesy, not law. He said that signs cannot be put on the State highway. Mrs. Hannigan suggested putting them only on the Fown roads. Mr. Kruser feels it cannot be done without signs.
32. Mrs.Ryerson asked if there were more accidents going east or west. Mr. Hebert indicated west. Mrs. Ryerson suggested putting signals near Spring St. to slow traftic.
33. Mr. Briggs said that the State was not involved when Washingen St, and Pine St. were closed. He feels that the DPW needs to meet citizens half way, and that the DPW is afraid blocking off behind the church will work.
24. Mr. Terfecki also suggested traffic lights at Spring St. There needs to be a courtesy awareness campaign. The Board needs to take another look.
35. Mr. Kruser said that theri is no money for another look. He is not pushing his plan. Altemarive 2 was a Buand decision. The Board will go with Town Meeting vote.
36. Mrs. O'Bricn asked when the road was blocked before. It was in 1982. She stated that Birchwood Dr. and Maplewood Dr. did not exist as a potential cut through in 1982. It would be used as one now. More money is needed fre:n Town Meeting for more studies.
37. Mr. Dougherty said that the field would have to be raised $51 / 2$ feet for a new road connecting to Route 139. The drainage dumping into the swamp would be a problem. The existing plans are the most logical. He reviewed the history of the ball fieid. There would be problems with the horses, if there is a new road. The propery would be devalued. The house was deeded to Briggs by the church in 1854. The trees are almost 200 years old. What we have should be appreciated. Our forefathers put roads in where they did because it works. Lights would cause more of a problem with accidents, pollution and back-ups.
38. Mrs. Dougherty suggested that the scope was too narrow. It should be from Route 53 to West Hanover: The Board needs to go back to the drawing board.
39. The meeting ended with Mrs. Ryerson thanking Mr. Finneran for his efforts.
40. After the Town Center Study mceting ended, Mr. Gallant said that he voted to withdraw the article from Town Mecting. Mr. Kruser said that the article will have to stay in. The Board should report how the money was spent. Mr. Gallant feels that the Board has done its job, but the residents did not want to listen. Mr. Kruser said that he would speak on Town Meeting floor. The other two Board members suggested that Mr. Homan speak for the Board.
41. The Board discussed with Mr. Hebert how the problems do exist, but the Town wants to do nothing. It is not the right time to make changes. Mr. Hebert will change his executive summary in his report to reflect onight's meeting.
42. Mr. Hebert was thanked by the Board for the effort he put into this study. They also expressed hope of being able to work with Mr. Hebert in the future.

Snow \& Ice:

Park:

Cemetery:

1. The Fire Deparment approved the changes in the Firemen's Memorial grave locations. Chief Tucker thought the changes were reasonable.
2. A request has been made, through the Veteran's Agent, for a WW II veteran to be allowed to purchase graves in the Hanover Center Cemetery, His only tamily is buried in Hanover. The Board approved the request for the veteran to purchase a four grave lot.

Watcr:

1. The Board signed Water Commitnents \# 98-26 and \#98-27 and abatements.
2. Ten bids were received for painting and repairing the Union St. Water Tanks. Hroma Corporation was the lowest bidder. Mr. Billings checked references and found them accepiable. Mr. Racicot recommended that the bid be awarded to Hroma Corporation.
3. It was moved by Mr. Gallant, seconded by Mr. Homan and unanimously voted to award the contract for painting and repairs to the Union Street tanks to Hroma Corporation and that the Superimendent is authorized to sign the contract for the Board. The alternate portion of the bid is for the outside of the large tark, which
 project is $\$ 250,000$. Pit welding will cost $\$ 2.00$ per pit. The project will start in May with a finishing date of July $15^{\text {th }}$. The large tank will be emptied and painted first, so that it can be put back in service for the summer.
4. It was moved by Mr. Homan, seconaed by Mr. Gallant and unanimously voted to award the contract for inspertion of the painting to Robert L. Merithew, Inc. Mr. Kruser asked on what basis he would be paid. He will be paid in a daily cost basis. Mr. Gallant asked if he will inspect every day that the painter is there. He will.
5. Mr. Racicot spoke with Mr. Toomey regarding the Hanner property case. Mr. Racicot also met with Mr. DiGresorio, a wedands scientist working for Mr. Toomey's office, about the case. Mr. GiGregorio was given map copies and access to the property.
6. Weston \& Sampson have been sent plans of the new Police Station for revjew, because of the location within Zone II of the Broadway wells. Comments will be used for the WQCC.
7. Employees have been inspecting the water and drainage work at the Hanover Mall.
8. Spring water main flushing has begun. There is still high amounts of manganese in the water, possibly due to the higher pH going out.

Transfer Station:

1. Mr. Racicot and Ms. Swete, planner for SSRRDPB, rook inventory of old pesticides and hazardous waste at the Highway Garage. The material will be disposed of at the Household Hazardous Waste Day in May.

Deyelopments:

1. Mr. Donovan. Town Planner, contacted Mr. Racicoi to discuss the Planning Board's proposal to require the developer of Holly Farms V to construct a sidewalk on Whiting St. from Homestead Lane to the Middle School. The Planning Board wants a sense of the BPW's feelings on the issue. Mr. Kruser and Mr. Racicot feel that a survey would need to be done. Mr. Kruser feels that a sidewalk design needs BPW approval.

Highway:

1. Mr. Racicot and Mr. Kruser met with Coler \& Colantonio to give review comments on the Webster St. 75\% draft submittal.
2. Mr. Kruser opened the Town Center Study meeting by presenting an overview of the four alternatives to the existing conditions that Mr. Hebert had developed. Mr. Hebert of Fay, Spofford, and Thorndike was unable to attend the meeting due to hospitalization. Mr. Kruser said that the input from this evening's meeting will be used to develop one proposal. This proposal will then be presented to Town Meeting for consideration. He encouraged people to fill out the evaluation on the last page of the packet to help with the decision. He then opened the meeting for questions and comments.
3. Mr. Brown asked what was driving the project. Mr. Kruser said the heavy traffic was a concern. Trying to turn at Main St. and Route 139 requires a gap in both directions of traffic. When you can't get a gap in each direction, traffic starts to back up.
4. Mr. Finneran said that the street lighting is not good in the town center area. Some kind of signals are needed. He feels more police enforcement is needed. He does not feel that a 45 second wait to get out of Main St. is too long. The only frustration comes from this building, not others. This study is all much ado about nothing. He is surprised the Board held the meeting without Mr. Hebert.
5. Mr. O'Brien feels that it is only a matter of time before there is a fatal accident in the Town Center. He is frustrated having to deal with the intersection, especially on Saturday aftemoon, when residents are headed to the-tranisfer station. He asked who decides on signals. Mr. Kruser indicated that recommendations have to be made to the State. It is a State road.
6. Mrs. Dougherty feels that the section of Center St. next to the church should be made right tum only. If there are going to be lights, they should be put near the memorial. The lights should be put where the problem is.
7. Mr. Casey said that lights at Grove St. may help. Perhaps the Civil War Monument could be moved. It was pointed out that there will not be lights at Grove St., just a new mast arm for the blinking lights.
8. Mr. Dougherty said that it would be difficult for the horses at the stable, if Center St. is moved. As an abutter he will feel that the read goes through his house.
9. Mr. Kruser indicated that Center St. needs squaring up, especially for the Fire Department.
10. Mr. Finneran cited Article 97 of the Environmental Law which may prohibit the moving of the ball field. Mr. Kruser pointed out that the ball field is not the basic issue of this meeting.
11. Mr. Itz said that he is one of the people frustrated by the intersections. Alternative \# 2 looks nice, but his favorite is Alternative \# 1. He questioned parking for the church. Pedestrian crossing on Route 139 from the Parish Hall to the Library, for example, is a problem. Traffic signals are a possible solution. Alterative \# 1 is the best.
12. A woman stated that driving on Hanover St. is a nightmare. Turns are awful.
13. Mr. Dougherty questioned the type of lights that would be used. Mr. Kruser said that the State would be encouraged to use a new style like a Boston lamppost.
14. Mrs. Remick is in favor of going from 5 to 2 intersections. The options should at least be limited. She likes the idea of the church and ball field being together.
15. Officer Roach has spoken with the State about a pedestrian light at the library. He feels that lights that fit the character of the town could be negotiated.
16. Mr. Thomson liked Alternative \# 1 the best and maybe Alternative \# 2. More information is needed for Town Meeting. He asked if State funding would be available. He mentioned that by moving Center St. the Dougherty's would be looking at hubcaps. He doesn't feel that Town Meeting should vote without more detail. What is done will be dictated by the State, if more detail is not provided.
17. Mr. Kruser said that the State tries not to shove plans down the throats of residents.
18. Mr. Finneran asked if there was a projection of cost for Alternative \# 2. Mr. Kruser said no. Mr. Racicot indicated that nothing has been settled yet. Mr. Finneran would like to see facts and figures on cost and time. Mr. Racicot said that the project is on the State TIP program for funding. Mr. Kruser believes that cost is not the issue at this time, safety is the first issue. The design of the alternatives is not at a level for costs.
19. Mr. Itz indicated that he has been on the TIP board. The State is looking for the town's wishes.
20. Mrs. Barker asked if Main St. in back of the church could be closed, as it is in Alternative \# 1, to see what happens. Mr. Kruser said that some money would have to be spent to do that.
21. Mr. Casey also suggested doing some blocking off and to have a right turn lane on Route 139 to turn into Main St.
22. Officer Roach indicated that Assinippi Park in Norwell has added more traffic to Main St. than the opening of Shaw's.
23. One resident indicated that Shaw's opening has exacerbated the situation.
24. Mr. Itz stated that there has been some impact from Shaw's, but not a tremendous amount.
25. Mr. Brown feels that the traffic speed and direction needs to be moderate. He feels that residents should exercise thrir fancy in planning the aesthetics of the area.
26. Mr . Homan indicated that he has lived in town 13 years and has had 4 or 5 near misses at the intersection. He feels that something needs to be done before there is a fatal accident. He especially does not want to see a car go into the ball field, when there are children there.
27. Mrs. DuBois asked, if the town does not make plans for the money; will the State dictate what is to be done. Mr . Kruser said that the State would take the money for another project.
28. Mr. Dougherty questioned safety. He feels that putting a signal at Center St. by the gas station does not resolve safety for pedestrians. Mr. Kruser said that it provides a gap in the traffic for vehicles. Mr. Dougherty feels that the big problem is safety at Main St. and Route 139.
29. Mrs. Navitskis was concerned that with Alternative \# 2 vehicles could not get directly from Main St. to Silver St. without going onto Route 139.
30. Mr. Thomson liked Alternative \# 1 the best but questioned a light at Center St. by the church.
31. Mr. Johnson stated that traffic has not grown very much. The fatalities that do occur in town happen on Main St. Residents need to keep perspective. Being able to look at the type of signals that would go in would be helpful. He asked it the lights would be like Whiting St. Mr. Kruser said no. Whiting St. lights are the way they are because of the skew in the layout. Mr. Johnson feels that what the town wants in 30 years needs to be considered. He believes that Alternatives \# 1 and \# 2 give an opportunity for better safety.
32. Mr. Itz asked if traffic lights at Spring St. had been considered. Mr. Kruser said it was out of the scope of the Town Meeting article.
33. Mr. Thomas asked if the speed limit could be lowered.
34. Mr. Lewald said that the Board of Selectmen were trying to get the speed limit in the center reduced to 30 MPH . He asked for details of the study. Mr. Kruser said that that information was presented at the first meeting. Mr. Racicot said that a copy of the information was sent to Mr. Rollins.
35. Mr. Dougherty suggested that an officer patrol the area during peak hours to reduce speeding. Mr. Kruser and Mr. Racicot suggested he speak with the Police Chief.
36. Mrs. O'Brien said that she times getting out of Main St. when she brings her son to football practice. One wait she timed at 4 minutes, 45 seconds. She has almost been rear-ended turning into Sylvester School. She also suggests trying some of the alternatives before a decision is made.
37. Officer Roach said that he has been working on the school lights with the State. The State will not change the speed limits. When the Police patrol the area for speeders, town residents and teachers are the worst offenders.
38. Mr. Gallant stated that there is a sense that something needs to be done. He asked for some direction from residents with the issues and options.
39. Mr. Finneran asked what the church issues were. Mr. Kruser feels their issues are primarily for pedestrians. Mr. Itz asked if barrels could be used in the crosswalks. Mr. Kruser said he would have to write to the State about thät issuie: Officer Roach said that barrels on the State highway can only be used if the Board of Selectmen sign off on liability.
40. Mr: Brown asked if it would be appropriate to send letters. Mr. Racicot said that it was, and that Mr. Hebert has spoken with a number of people.
41. A resident indicated he preferred Alternative \# 1, but he questioned a potential parking problem.
42. The meeting ênded with the Board asking residents to fill out the evaluation sheet with the Alternatives packet.

Snow \& Ice:

1. Mr. Racicot reported that crews have spent considerable time battling lingering snow and ice storms. The crews have worked very hard. There have been only two complaints.
2. -Mr-Racieot-met with-the-Fire-and Police Chiefs to review the snow and ice operations today. Both men are very satisfied with the operation. Mr. Tucker requested that satellite fire stations receive earlier attention when plowing is needed.
3. Mr. Gallant asked about the Fire Department's concern that it was slippery on Webster St. Mr. Racicot addressed this issue with Mr. Tucker. It should have been handled by the Police shift supervisor.
4. Mr. Gallant raised the issue that he thought it had been agreed that contract plowers would be called out when the DPW plows go out. Mr. Racicot's reply was "Because you want to take care of the plowers". He then said, "Put that in the minutes". Mr. Racicot then said that a campaign promise was made regarding snow plowers. Mr. Racicot said that he would not call out the contract plowers for a little bit of slush, like the $12 / 23$ storm. He said it is his decision to make. He is the superintendent. Mr. Kruser asked why Mr. Gallant wants the plows called out all the time. Mr. Gallant responded that, if you want the contract plowers for an 8 inch storm, you need to call them out for the 3 inch storms. Mr. Racicot agreed with 3 inches, but not $11 / 2$ inches. Mr. Gallant also explained that when one truck is used the snow is thrown into the middle of the road. If trucks plow in tandem, the whole road gets cleared. He also said that large trucks cannot do intersections. Mr. Homan is concerned that, if the plowers are not called out, they will go to other towns. Mr. Racicot said that every storm is different. When there is $11 / 2$ inches of snow, he uses 10 town trucks in tandem. Mr. Racicot said that Mr. Gallant and Mr. Homan would have called out the plowers on $1 / 19$ for only a small amount of snow. He said that the rest of the taxpayers are not here. Mr. Homan does not want the Board to bury its head in the sand. Mr. Racicot said that snow plowing was the one reason Mr. Homan ran for the Board, and that Mr. Homan does not care what the plowing costs. He further said that this issue comes up every two weeks. He indicated that, according to Mr. Gallant and Mr. Homan, he never does the plowing right. He feels that Mr. Gallant and Mr.

SIGN IN SHEET

TOWN OF HANOVER

BOARD OF PUBLIC WORKS

40 POND STREET
HANOVER. MASSACHUSETTS 02339

Board of Public Works, November 12, 1997

Attendance: Michael Gallant, BPW
John Homan, BPW
Benjamin Kruser,-BPW
Michael Racicot, DPW
Nancy Jacobson, DPW
Gary Hebert, Fay, Spofford \& Thorndike, Inc.
List attached for Public Meeting on Town Center Study

DPW Administration:

1. The meeting began at 7:00 PM and adjourned at $10: 15 \mathrm{PM}$. The Town Center Study public meeting portion of the meeting began at 7:35 PM and ended at 8:50 PM.
2. The Board signed bills and reviewed correspondence.
3. The Board approved the minutes of the October 29, 1997 meeting.
4. The BPW has been scheduled to meet with the Capital Improvement Committee on Monday, November 2.4th at 8:00 PM at Town Hall in the upstairs hearing room.

Highwav:

i. Mr. Racicot met with Mir. Koiiins iegaraing background information on the Town Center intersection. Mr. Rollins gave the DPW all materials and documents related to the project.
2. The large number of invoices for changing tires at the garage was questioned. Mr. Racicot said that the DPW does not have the equipment to mount the tires. The amount is high because he has had recapped snow tires put on the dump trucks. Also, all four tires needed to be changed on the JCB, because they were the wrong size and required a matched set.
3. Mr. Homan had received a call from a resident who was dissatisfied with the response he received regarding a street opening permit for a driveway onto his property. Mr. Racicot cxplained that where the resident wanted to put the driveway was right at a catch basin. Continually driving back and forth over the catch basin would damage the basin.
4. It was moved by Mr. Homan, seconded by Mr. Kruser and unanimously voted to award the contract for restoration of bituminous concrete pavement to Felix A. Marino Co., Inc. and that the Superintendent is authorized to sign the contract for the Board. The DPW participated in the Town of Falmouth and Metropolitan Consortium bid.
5. Mr. Kruser introduced the public meeting by giving an overview of the history of trying to have the Town Center intersections reconfigured for safer travel. He then introduced Mr. Hebert, who is the engineer from Fay, Spofford \& Thorndike, Inc. doing the current study.
6. Mr. Hebert presented his findings from traffic studies, police reports, and on site observations. He stated that the center is a mixture of 5 intersections. Using traffic counts he found the two busiest times of day to be between 5:00 to 6:00 PM weekdays and midday on Saturdays. The speed is the lowest around 2:00 PM, probably because of the schools. Most of the time the speed averaged 40 mph or above. 96% of the vehicles are cars, 3% are buses and trucks, and 1% are bicycles. Most accidents occur during peak times. The backup onto Silver St. during peak times is nine to ten cars, which is lower than statistically expected. The accident rate is lower than the State would find appropriate for signalization. The State rate is five per year. The volume however, is high enough for signalization. The Main St. intersection with Route 139 has a volume of over one hundred turns per hour during peak hours. The State uses over 750 turns per eight hours in determining the need for signals. More than half the traffic going west on Route 139 turns at Main St. or Center St. More eastbound traffic goes straight. At Silver St. Mr. Hebert found more vehicles turning right onto Main St. ther in 109 . The total courts were $21 / 2 \%$ lower than 1986 . Mr. Mebert sugested that traffic calming could be used by making a one way traffic pattern around the church. Among the problem areas Mr. Hebert identified were:
a. Sight distance from Center St. at the church onto Route 139
b. Pedestrian crossing at the church
c. Center St. at church is narrow, in poor condition, and poorly lit
d. Main St. in back of the church is narrow
e. Ball field
f. Left turn on Silver St. has fence obstruction
g. Left turn at Main St. and Route 139 is difficult
7. Areas Mr. Hebert would likes to look at are looping around the church, moving Center St. to go through the ball field, and closing Main St. in back of the church.
8. Mrs. Barker would like to see options clarified as to what alternative will have the least impact. She is also concerned, particularly because of the historical character of the center, that traffic signals not be used. Mr. Hebert expressed concern about installing signals, since that might increase the incidences of rear end collisions.
9. Mr. Hebert asked if Briggs field was untouchable. Mr. Finneran felt it should be left alone. He feels the field is used year round and should be kept available for residents. Other attendees expressed that the field was used primarily in the spring.
10. A gentleman from the Historical Commission said that he would like to see a range of options for changes. He feels the ball park is important and another option to using that space should be found. He is pleased to hear about traffic calming. He asked if any federal funds would be available for the project.
11. Mr. Kruser explained that the project was on the State TIP list. The Town could use Chapter 90 money to pay for the design.
12. Mr. Hebert stated that it will be difficult to improve the intersection with no changes.
13. Mr. Ceurvels asked if funds would be available to make baseball field improvements. Mr. Kruser said that funding was possible if it was essential. Mr. Ceurvels suggested blocking the section of Center St. next to the field.
14. Mrs. Franzosa expressed concerns about having lights in the center of town. She asked about the possibility of making Silver St. one way.
15. Mr. Kruser said that he believed that the Police and Fire Departments would not like street closings and one way streets.
16. Mr. Pervane asked if one plan would be to make Main St. one way around the church. He suggested making Silver St. and Main St. one way turns meeting on Center St. and then going out to Route 139.
17. Mr. Hebert indicated that newer styles of signals can be made to look half way decent.
18. Mr. Briggs felt that the only problem was during commuting hours. The back of the church was blocked in 1983 or 1984. He felt it worked well. He also mentioned that the triangle of land across from the Fire Department on Center St. was a gift to the town. He questioned what restrictions were placed on this property and the ball field, when they were given to the town.
19. Mr. Thomson expressed his concern that the ball field would need six to eight feet of fill to bring it up to grade for sight distance. Two or three historic ash trees would have to be taken down. The road could be made acceptable, but not perfect. Widening and radii on Center St. need to be looked at. He feels that the circular driveway at Town Haili should be eliminated. The turn at Center St. by the Fire Department should be squared off. He does not want to see the ball field moved. He is concerned about getting involved with the State and requirements that may have to be met. Mr. Thomson does not want signals. His first reaction is to do nothing.
20. Mr. Kruser said that the Board is working to improve safety.
21. Mr. Briggs reiterated that congestion is not that bad except for a couple of times during the day.
22. Mr. Kruser indicated that the BPW's charge to all firms that submitted proposals was for the need to be sensitive to the historic nature of the center.
23. The Reverend Sue Remick, wife of the pastor of the church, asked if the study incorporated the Sylvester School Zone. On Sunday momings there is a pedestrian problem for people parking in the parish hall parking lot and walking across to the church. Getting in and out of the parsonage is difficult because of the speed. Usually they back in, but that is dangerous too. Drivers do not see pedestrians.
24. Mr. Hebert stated that he was aware of the conditions that Reverend Remick spoke about. He has looked at the worst.
25. Reverend Remick asked if options to slow the traffic at Spring St. and Grove St. had been looked into. Perhaps the traffic could be slowed at these intersections to keep it slowed down for the Historic District.
26. Mr. Kruser said that the BPW petitioned the state for three lanes of traffic in the center, so that there could be a turning lane for left turns. The Board will follow up on this option with Landers.
27. Mrs. Powers said, that as a resident of Donna Dr., she frequently goes Silver St. to Route 53 to get to Shaw's rather than make the left turn at Main St. and Route 139.
28. Mr. Nyman indicated that the Board of Selectmen had a meeting on this issue a year ago and the consensus was to leave it alone.
29. Mr. Kruser stated that the BPW asked the May Annual Town Meeting for money for the study. It is a safety problem that will not go away. The good versus the adverse needs to be weighed.
30. Mr. Thomson asked if the issue will go back to Town Meeting. Will residents have an opportunity to vote or will it breeze by Town Meeting?
31. Mr. Kruser felt that there is no answer to this question until the project is down the road a bit. Chapter 90 money could be used with the Board of Selcetmen's approval.
32. Mr. Casey expressed his opinion that the town should get as much money from the State as possible, then do the rest in small bits.
33. From looking at the plans for the current work on Route 139 Mr . Kruser believes that signals will be going in at Grove St. The impact that this will have on center traffic can be observed. Lights away from the historical area may help.
34. Mr. Itz asked about having traffic cones used in pedestrian walk ways. It was generally felt that cones did not increase the safety and are difficult to monitor.
35. Mr. Hebert felt that the danger is from speed.
36. Mr. Casey indicated that there is a saga about crosswalks at the church.
37. Mr. Kruser assured the residents that any plans presented will take pedestrians into account.
38. Mr. Tucker said that the Fire Department makes about 1900 calls per year. They depend on access to both Silver St. and Main St. He feels closing the road behind the church is the best option. He would like to see more of a right angle turn on the Fire Department side of Center St. Turning right from Silver St. to Main St. and then left onto Center St. at the church is a problem for fire apparatus.
39. Mr. Hebert indicated that he will look closely at turning radii.
40. Mr. Tucker said that he has templates for turning radii.
41. The meeting ended with a commitment from the Board to hold another meeting in about a month, when some suggested plans have been developed.
42. After the meeting Mr. Gallant and Mr. Kruser expressed interest in having copies of Mr. Tucker's templates.
43. Mr. Gallant complemented Mr. Hebert on a great presentation, an opinion that had already been expressed by several residents.
44. There was a discussion with Mr. Hebert and the Board as to what to do next. The rate of accidents was discussed. Mr. Hebert indicated that more than one accident per million is considered high. Hanover Center's rate is 1.2 per million. There does not seem to be strong data for signals. Mr. Hebert will focus on non-signaled options. The issue of the possible use of the ball field will be analyzed. It was agreed that the Board will meet with Mr. Hebert at the $12 / 17$ meeting. Mrs. Jacobson suggested postponing the next public meeting until after the holidays, which was agreed upon by the Board.
45. Mr. Kruser said that Mr. White investigated the conditions of ownership for Briggs' field when the Board of Selectmen was looking at the center issue. Mr. Racicot will check with Mr. Rollins as to what information has been found. He will also check on the triangle of land across from the Fire Station.

Snow \& Ice:

1. Employees have been preparing equipment for the winter. The emergency generator at Ames Way is ready. Mr. Racicot thanked Mr. Homan for his donation of time, labor, and materials for the shed enclosing the gencrator. The DPW can now run all necessary systems at the garage on the generator.

Park:

1. The fall tree trimming and tree removal with the bucket truck is completed. There are several tree trunks remaining that will be cut down during the winter, when the ground is frozen.

Cemeterv:

1. The latest revisions of the proposed regulations for memorial sections have been given to Mr. MacLean to give to the Police and Fire Departments.

Water:

1. The Board signed Water Commitment \# 98-14 and abatements.
2. The pump motor at the Pond St. \# 1 well had to be repaired at the cost of approximately $\$ 2,500.00$. The well was out of operation for five days. Mr. Racicot commended the treatment plant staff in keeping the price down. Mr. Homan asked if the pumps for all the wells should be standardized. Mr. Racicot felt that such an approach would be very expensive and impractical because of the individual needs of each well.
3. The business owner at 231 Broadway has requested an abatement on a high water bill dating from June. The Board asked that the meter be tested. If the meter tests as working accurately, the owner will be expected to pay the full bill. If the meter tests defective, an abatement will be considered.

4: Representatives from Sprint are pressing to meet with the Board again regarding an antenna on the Walnut Hill water tower. Mr. Kruser suggested that they be asked to send drawings for review, rather than come in to talk. Mr. Racicot said that what they are looking for at this time is a hold harmless release to do engineering. He will bring the paperwork to the next meeting for the Board to review. Mrs. Jacobson expressed Mr. Billings' and Mr. Diniak's concern about the tower being used. DEP has expressed strong reservations about this use. Mr. Billings and Mr. Diniak will be attending a meeting on November 24th about this issue. The Board asked that the two men submit a report for the $12 / 3$ Board meeting.

Transfer Station:

1. Erployees had to clean up a large amount of trash dumped over the weekend at the gate of the station It probably amounted to two dump truck loads. Information on a resident was found in the trash and the resident has been billed for the DPW's time for cleanup.

Developments:

1. Requests for street acceptance at the next Annual Town Meeting have been received for Meeting Hill Lane and Thorny Meadow Way.
2. The-Planning Board has submitted a number of plans to the DPW for review. The largest is Holly Farms Phase V with 62 lots.

Pending:

1. DPW Administration
2. Highway
A. Setting up and implementing a town-wide GIS system
B. Computerization of fleet records and a data base on repairs and preventative maintenance
3. Snow and Ice.
4. Park
A. Park \& Recreation expansion - work with Park \& Recreation to get funding for increased maintenance
5. Cemetery

A. Regulations update - do in August

B. Review capacity on master pian and assess long term needs
6. Water
A. Aquifer Protection Zone compliance - need list of businesses in zone with current compliance -non-compliance status
B. Parts stores and gas stations - need list of what they store and how disposed of to monitor - could be part of WQCC monitoring
C. Backflow preventer installation status
D. Treatment of Broadway and Hanover Street wells
E. Management plan for treatment plant sludge
F. Wastewater treatment, especially in the Aquifer Protection District and commercial zones, done in conjunction with the Board of Health
7. Transfer Station
A. Operations
B. Curb side collection of waste using contracted services. Use station for recycling and composting.
8. Developments
A. Rewrite Subdivision Rules and Regulations with the Planning Board, providing sectional details

Scheduling:

1. The next Board of Public Works meetings will be held on Wednesday, December 3, 1997 and Wednesday, December 17, 1997 at 7:00 PM in the Water Treatment Plant.

SIGN IN SHEET

[^0]: Intersection Delay =
 $1.1 \mathrm{sec} / \mathrm{veh}$

[^1]:

[^2]:

[^3]: Intersection Delay $=1.2 \mathrm{sec} /$ veh

